FINALS III 1983-84

1. Determine the number of integers from 1 to 999 which contain either the digit 3 or the digit 5 , and such that the middle (tens unit) digit is an odd integer.
2. A woman has at least 2 children and more than $\$ 300$ in the bank. If the product of her age, the number of dollars in her account and the number of children she has (all integers) is 31310 , how many children does she have, what is her age, and how much money does she have in the bank?
3. If A, B, C are positive integers then by definition $A=B \bmod C$ provided $\frac{A-B}{C}$ is an integer.
(a) Prove if $A_{1} \equiv \bmod C$ and $A_{2} \equiv B_{2} \bmod C$ then $A_{1} A_{2} \equiv B_{1} B_{2} \bmod C$
(b) Prove that if $A \equiv B \bmod C$ then for every positive integer $n, A^{n} \equiv B^{n} \bmod C$.
4. Given that the equation $x^{5}+4 x^{4}+C x^{3}+D x^{2}+E x+F=0$ has $x=i$, where $i^{2}=-1$, and $x=3$ as two of its roots and 30 for the product of the roots:
(a) Find the values C, D, E, F.
(b) Find the remaining roots.
5. George starts with the amount 256 cents and makes a series of bets. On each bet he either wins or loses half of his amount; however if this results in a fractional (noninteger) number then he loses all of his amount (his amount is then 0).
(a) Could he ever have the amount 25 cents? If so show a sequence of wins and losses to reach that amount; if not give a proof or explanation.
(b) Repeat (a) if the amount is 27 cents.
(c) Give a general formula for the possible values (other than 0) for George's amount at some stage in the betting.
(d) Give the number of possible amounts in (c).
6. In a race Tom, Bill, and Jack run at constant speeds. Tom beats Bill by 2 miles and Tom beats Jack by 3 miles. If Bill runs $10 / 9$ as fast as Jack, and it takes Bill 1 hour to run the race, how long does it take Tom?
7. (a) Show that if A is an integer then either $A^{2} \equiv 0 \bmod 4$ or $A^{2} \equiv 1 \bmod 4$ (see problem 3 for definition of $A \equiv B \bmod C$).
(b) Show that there are no positive integers x, y, z for which
$x^{2} y^{2}-x^{2}-y^{2}=z^{2} .($ Hint: Consider what happens mod 4)
