FINALS IX 1989-90

1.(a) The graph of the line $y=7 x+3$ is shifted 5 units to the right, then shifted 4 units down, and then rotated 45° clockwise about the origin. Find the equation of the resulting graph.
(b) The graph of the equation $f(x, y)=0$ is reflected about the x axis, and then rotated 90° counterclockwise about the point (h, k). Find the equation of the resulting graph (answer should be expressed in terms of $f, x, y, h, k)$.
2. Let n, k be positive integers.
(a) Prove that at least one of the integers $n, n+4, n+8$ is divisible by 3 .
(b) Prove or disprove that at least one of the integers $n, n+2^{k}, n+2^{k+1}$ is divisible by 3.
3. Given a trapezoid $A B C D$ which has parallel sides $A B$ and $D C$ and area 1 , let a be the length of $A B, b$ the length of $D C$, and let L be the length of the segment $E F$ parallel to $A B$ and $D C$, where E is on $A D, F$ is on $B C$, and the distance from $E F$ to $D C$ is h.
(a) Find a formula for L in terms of a, b, h.
(b) Find a necessary and sufficient condition, in terms of a and b, so that $L \geq h$ in all cases.

4.(a) From a list $S_{3}=\{a, b, c\}$ of three (not necessarily distinct numbers) one can generate a list $T_{3}=\{a+b, a+c, b+c\}$ of three numbers by adding pairs of numbers in S_{3}.
(a1) Given that $T_{3}=\{17,29,44\}$ find a list S_{3} that generates T_{3}.
(a2) Prove that for every list T_{3} there is a unique list S_{3} that generates T_{3}.
(b) From a list $S_{4}=\{a, b, c, d\}$ of four (not necessarily distinct numbers) one can generate a list $T_{6}=\{a+b, a+c, a+d, b+c, b+d, c+d\}$ of six numbers by adding pairs of numbers in $S_{4}=\{18,21,26,29,34,37\}$
(b2) Prove that not all lists T_{6} of six numbers can be generated by a list S_{4}. If $T_{6}=$ $\{u, v, w, x, y, z\}$ find a necessary and sufficient condition in terms of u, v, w, x, y, z such that T_{6} can be generated by a list S_{4}
5.(a) Find integers x, y such that $2 x+3 y$ is an integer multiple of 13 ; show that for these values of x, y it is true that $7 x+4 y$ is also an integer multiple of 13 .
(b) Prove that if x, y are any integers such that $2 x+3 y$ is an integer multiple of 13 then $7 x+4 y$ is also an integer multiple of 13 .
(c) Find integers m and n, where $3 n \neq 5 m$, such that if $3 x+5 y$ is an integer multiple of 23 then $m x+n y$ is also an integer multiple of 23.
6. An urn has $N(N>2)$ balls numbered $1,2,3, \ldots, N$. Three balls are drawn from the urn (no balls are put back in the urn). Let $P(N)$ be the probability that one of the three numbers drawn is greater than or equal the sum of the other two.
(a) Find $P(3), P(4), P(5), P(6)$.
(b) Find an expression for $P(N)$. For maximum credit write the expression in closed form (no extended sum or difference expressions). You may wish to use the sum formulas: $\quad 1^{2}+2^{2}+\ldots+k^{2}=k(k+1)(k+2) / 6$

$$
1 \mathrm{x} 2+2 \mathrm{x} 3+3 \mathrm{x} 4+\ldots+k x(k+1)=k(k+1)(k+2) / 3
$$

