FINALS XIV 1994-95

1. Find all sets of 5 positive integers whose sum equals their product; prove there are no others. Note: The 5 integers are not necessarily different.
2. Let A and B be two distinct points in the plane. Describe the geometric curve which is the locus of all points P such that sec $\angle A P B=|P A||P B|$. Note: sec is the secant function from trigonometry.

3. In the diagram below, an object starts at 0 and moves to the right (i.e. always in an east, southeast or northeast direction). There is one path 01 to 1 , three paths 012,02 , and 01 '2 to 2 , and four paths $013,0123,023,01$ '23 to 3.
(a) Find the number of paths to 4 and to 5 .
(b) Determine a method using formulas or an algorithm for computing the number of paths $P(N)$ from 0 to N for each positive integer N.
(c) Using your solution in (b) compute the number of paths from 0 to 8.

Warning: Don't try to list them as there are too many!
(d) Find the number of paths from 0 to 8 which pass through 4.
(e) Find the number of paths from 1 to 8

4. (BOILED EGG PROBLEM) Given an x minute and a y minute sandtimer boil an egg for exactly t minutes (where x, y, t are positive integers).

Note: In some cases there may be a waiting time before starting the boiling of the egg. Also for a given case a solution, if it exists, may not be unique.

In cases (a),(b),(c) find a solution for the Boiled Egg Problem, if it exists.
(a) $x=3, y=2, t=17$
(b) $x=5, y=9, t=3$
(c) $x=3, y=6, t=14$
(d) Find a relation among x, y, t that is necessary and sufficient that there be a solution to the Boiled Egg Problem.
(e) For the cases when there is a solution to the Boiled Egg Problem give an algorithm for finding a solution. Also, if there is a waiting time, your algorithm should show how to find the solution with the least waiting time.
(f) Apply your algorithm to the case $x=12, y=5, t=6$.

Note: Students may use a calculator on problem 5.

(PROBLEM 5 IS A CALCULATOR PROBLEM)

5. Bill starts with $\$ P$ and makes a series of n bets, each time betting $1 / 2$ of his amount (P + winnings - losses). He wins k of the n bets. He is said to be a Winner if he ends with more than $\$ P$. Assuming his amounts are calculated to the nearest cent:
(a) For $n=4$ if Bill wins the first and last bets and loses the second and third bets, find the final amount in terms of P.
(b) Find in terms of k, n, P Bill's amount after the n bets and show it is independent of the order of wins and losses.
(c) If $n=1000$ find the smallest value of k for Bill to be a Winner.
(d) If $n=1000$ find the smallest value of k for Bill to finish with at least $\$(100 P)$
(e) Repeat (c) if each time Bill bets $3 / 4$ (instead of $1 / 2$) of his amount.
(f) Repeat (c) if each time Bill bets $1 / 4$ (instead of $1 / 2$) of his amount.
(g) Suppose each time Bill bets the fraction $r, 0<r<1$ of his amount. In terms of r determine the values of the ratio k / n needed for Bill to be a Winner.
(h) In (g) if r is very close to 1 what can be said about the value of the ratio k / n needed to be a Winner? (Explain your answer)
(i) In (g) if r is very close to 0 what can be said about the value of the ratio k / n needed to be a Winner ?(Explain your answer).
