FINALS XV 1995-96

1. In this problem the variables w, x, y denote positive integers. Given the pictured rectangle with sides x and y, and having a border of width w :
(a) If $w=1$ find all possible values for x and $y, x<y$.
(b) If $w=2$ find all possible values for x and $y, x<y$.
(c) For w arbitrary describe in terms of w all possible values for x and y.
(d) Determine all cases, if any, for w, x, y where $x=y$.

2. Let $A B C D$ be a trapezoid with parallel sides $A D$ and $B C$ perpendicular to side $A B$. Let E be a point on side $A B$ and a, b respectively the lengths of sides $A D$ and $B C$, where it is assumed $a>b$.
(a) Given that triangle $C D E$ is equilateral find the length x of the sides in terms of a and b.
(b) Find a relationship between a and b in order that there exist a point E on side $A B$ such that triangle $C D E$ is equilateral.

3. In this problem a, b, c, d, k, n denote non-negative integers; $a \equiv b \bmod n$ means $a-b$ is divisible by n.
(a) Prove if $a \equiv b \bmod n$ and $c \equiv d \bmod n$ then $a c \equiv b d \bmod n$.
(b) Find $b, 0 \leq b \leq 421$ such that $3^{8} \equiv b \bmod 422$
(c) Find $b, 0 \leq b \leq 421$ so that $3^{16} \equiv b \bmod 161$.
(d) Suppose k is a positive integer such that the exact value of 3^{k} is out of the range of your calculator. Give an algorithm for finding $b, 0 \leq b \leq k-1$, so that $3^{k} \equiv b \bmod k$.
(e) Using your algorithm in (c) find $b, 0 \leq b \leq 421$ such that $3^{422} \equiv b \bmod 422$.
4.(a) An experiment has possible outcomes A or B, where A and B cannot occur simultaneously. If A has probability r and the experiment is repeated until either A or B occurs, find the probability in terms of p and r that A occurs before B.
(b) A bent coin has probability $3 / 5$ heads and $2 / 5$ tails on a given toss. If the coin is repeatedly tossed find the probability that a head followed immediately by a tail (HT) occurs before a tail immediately followed by a head (TH) occurs.
(c) In (b) find the probability that TH occurs before HH occurs.
(d) In (b) find the probability that $H H$ occurs before $H T$ occurs.
(e) Which is most likely to occur first (and why)?
$\begin{array}{ll}\text { (i) } \mathrm{HT} \text { or } \mathrm{TH} & \text { (ii) } \mathrm{TH} \text { or } \mathrm{HH}\end{array}$
(iii) HH or HT
(f) What is unusual about the conclusions in parts (i), (ii), (iii) of (e)?
4. A monkey climbs a 100 foot greasy pole. It climbs half way to the top and falls $1 / 4$ of the way to the bottom. It then climbs half way to the top from its new position and falls $1 / 4$ of the way to the bottom The climbing continues, each time climbing half of the way to the top from its new position and falling $1 / 4$ of the way to the bottom.
(a) The monkey is 50 feet high after the first climb; find its height after the second and third climb.
(b) Find a formula for its height after the $n^{\text {th }}$ climb.
(c) Describe the approximate position of the monkey after the $n^{\text {th }}$ climb when n is very large.
(d) Does the monkey ever reach the top of the pole? Explain.
