FINALS XVII 1997-98

1. For each positive integer $k>2$ let S_{k} be the set of all strings (words) of length k made up from the two letters X and Y such that each three (consecutive) letter substring has at least one X and one Y (thus the words in S_{k} do not include any subword XXX or $Y Y Y$). For example $S_{3}=\{X X Y, X Y X, X Y Y, Y X X, Y X Y, Y Y X\}$. Let N_{k} be the number of words in S_{3}; thus $N_{3}=6$.
(a) Find N_{4}
(b) For k arbitrary, $k>4$, give a method for finding the value N_{k} from (not necessarily all) the values $N_{3}, . N_{4}, \ldots, N_{k-1}$. Of course you should give a logical proof for your method.
(c) Using the method from (b) find N_{12}
2. Given the right triangle with sides a, b and hypotenuse c consider the two inscribed squares
(i) square with side s and containing the right angle
(ii) square with side t having one side a segment of the hypotenuse

(a) Find s in terms of a, b and c.
(b) Find t in terms of a, b and c.
(c) Prove that $s>t$ for all values of a, b, c.
3. In the game of baseball a player is said to 'hit for the cycle’ if he hits a single, double, triple and home run in the same game. Suppose for a particular player each time he bats the probability he hits a single is s, a double is d, a triple is t, and a home run is h. Also let $n=1-(s+d+t+h)$ be the probability of not getting a hit.
(a) If the player bats 4 times in a game what is the probability, in terms of s, d, t, h, he hits for the cycle?
(b) If the player bats 5 times in a game what is the probability, in terms of s, d, t, h, n, he hits for the cycle? Simplify your answer.
In parts (c)-(f) express answer to 3 or more significant digits.
(c) if $s=.18, d=.07, t=.01$, and $h=.04$ find the probability a player hits for the cycle in a single game if he bats 4 times.
(d) In (c) find the probability the player hits for the cycle at least once if he plays 2,000 games and bats 4 times in each game.
(e) In (c) find the probability the player hits for the cycle exactly 2 times if he plays 3,000 games and bats 4 times each game.
(f) Find the product $p=s d t h$ in order that a player have a probability of $1 / 2$ of hitting for the cycle at least once in 2,000 games if he bats 4 times each game.
4. (a) Show that the set $\{1,2,3,4,5,6\}$ can be divided into three subsets, each of size 2 , such that the sums of the numbers in each subset is the same.
(b) Show that the set $\{1,2,3,4,5,6\}$ can be divided into three subsets, each of size 2 , such that the sums of the numbers in the three subsets form an arithmetic progression (of three numbers) with difference 1.
(c) Let K be an arbitrary positive integer >1. Show that the set $\{1,2,3, \ldots, 3 K\}$ can be divided into three subsets of size K so that the sums of the numbers of each set is the same.
(d) Let K be an arbitrary positive integer >1. Show that the set $\{1,2,3, \ldots, 3 K\}$ can be divided into three subsets of size K so that the sums of the numbers of the three sets form an arithmetic progression (of three numbers) with difference 1.
Hint: Parts (c) and (d) can be done simultaneously)
5. In this problem we consider solutions x, y of the equation ** $a x=b y+c$ where a, b, c, x, y are all integers.
(a) Find three solution pairs for x, y if $a=9, b=4, c=3$.
(b) Prove if $x=x_{0}, y=y_{0}$ are solutions of of $* *$ and n is an integer then $x=x_{0}+n b, y=y_{0}+n a$ are also solutions of **.
(c) Prove if a and b are relatively prime and if $x=x_{0}, y=y_{0}$ are solutions of ** and $x=x_{0}+d, y=y_{0}+e$ are also solutions of $* *$ then b divides d and a divides e.
(d) Prove if $a=1$ or $b=1$ then ${ }^{* *}$ has a solution.
(e) Describe infinitely many solutions of the equation $7 x=y+3$.
(f) Determine an algorithm (step by step procedure) for finding a solution to ** if a and b are relatively prime. It is sufficient to illustrate your algorithm by solving the two equations:
(f1) $19 x=9 y+7$
(f2) $32 x=27 y+9$
(No credit for an answer for x, y without a description of a general procedure for arriving at the answer.)
