DAVID ESSNER FINALS XXII 2002-2003

The use of a calculator is permitted only on problems 1(c) and 2. Graphic features of a calculator are not permitted.

I Integers Which Are Both Squares and Cubes Problem

For the purpose of this problem let a positive integer be called dual if it greater than 1 and is the square of a positive integer and also the cube of a positive integer.
(a) Find two dual positive integers.
(b) Find with proof a (necessary and sufficient) condition for an integer to be a dual integer.
(c) (Calculator Problem) Find all dual integers less than 600,000.
(d) Do you think the sum of two dual integers could be a dual integer? Why?

II The Modulo Problem (Calculators not permitted)

In this problem if n is a positive integer then $n \bmod 9$ denotes the remainder of the division of n by 9 .
(a) Let m, n be positive integers; prove that if $n \bmod 9=m \bmod 9$ then $(n+1) \bmod 9=(m+1) \bmod 9$.
(b) Let m, n be positive integers. Prove that if $2^{n} \bmod 9=2^{n+m} \bmod 9$ then $2^{n+1} \bmod 9=2^{n+m+1} \bmod 9$
(c) What are the possible remainders if n is a positive integer and 2^{n} is divided by 9 ? Justify your answer.
(d) Using (b) find the value of $2^{420,000,003} \bmod 9$; explain and justify your method of solution. (Calculators NOT permitted)

III The Ice Cream Cone Problem (A calculator problem)

In the figure $\boldsymbol{A B C}$ is an equilateral triangle with sides of length 2 and $\boldsymbol{A B}$ is a diameter of the pictured semicircle. If the arcs $\boldsymbol{A D}, \boldsymbol{D E}$ and $\boldsymbol{E B}$ are equal in length, find
(a) the measure of angle $\angle \boldsymbol{D C E}$ to the nearest 0.1 degree.
(b) the length of $\boldsymbol{C E}$ to the nearest .001

IV The Basketball Ordered Point Sequence Problem

(a) In 1950 a basketball player could score in two ways -
(i) 2 points for a field goal
(ii) 1 point for a free throw

For $n=1,2,3, \ldots$ let S_{n} denote the number of ordered ways a player could score n points. For example $S_{4}=5$ since there are the orderings: $(1,1,1,1),(1,1,2),(1,2,1),(2,1,1) .(2,2)$.
(a1) Find S_{3} and S_{5}.
(a2) For $n>5$ find a method for determining S_{n} from (not necessarily all of) S_{1}, $\mathrm{S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}-1}$. Explain why your method works.
(a3) Find S_{11} using your method in (a2). Do not try to list the sequences as there are more than 100.
(b) In the present day a basketball player can score points in three ways:
(i) 3 points for a long field goal \quad (ii) 2 points for a regular field goal
(iii) 1 point for a free throw.

Let T_{n} be the number of ordered ways a player could score n points. For example $T_{3}=4$ since there are the four orderings (1,1,1), (2,1), (1,2), (3). Find T_{11} and explain your method of solution.

V. The Fair Game Gambling Problem

(a) Players A and B alternately roll a 6 sided die, A going first. The first player to roll a 6 is the winner.
(a1) Find the probability that A wins after A makes 2 or fewer rolls
(a2) Find the probability A is the winner
(b) Suppose in (a) that A goes first and gets one roll, then B gets two rolls, then A gets one roll, then B gets two rolls continuing so that each time A gets one roll followed by B getting two rolls. What is the probability that A wins?

A gambling game among two or more players is a fair game if each player has equal probability of winning the game.
(c) Suppose A and B play with a die which is 'loaded' such that the probability of rolling a 6 is p. If A goes first and gets one try, then B gets two tries, then A gets one try, then B gets two tries, continuing until there is a winner; find the value of p so that this is a fair game.
(d) Suppose A and B play with a die which is loaded such that the probability of rolling a 6 is α and the probability of rolling a 5 is β, where $0<\alpha<\beta<1$. A and B alternately roll the loaded die, A going first, and each having one roll at their turn. If A rolls a 6 before B rolls a 5 then A is the winner; otherwise B is the winner.
(d1) Find the relationship between α and β in order that this is a fair game.
(d2) Determine the values of α such that there is a value of β to make this a fair game.

