

DAVID ESSNER FINALS XXV 2005-2006

The use of a calculator is permitted only on problem 1. Graphic calculators are not permitted. In order to receive credit for numbers obtained by a calculator it is necessary that numerical expressions used to determine these values be displayed.

1. A Gambling Strategy To Win $\$ 1$ (A Calculator Problem)

John's amount of money $\$ A$ is initially $\$ N(N>1$ is an integer) and he intends to increase his amount to $\$(N+1)$ by successive plays of a casino game in which each play has probability $2 / 5$ of winning and probability $3 / 5$ of losing the amount bet. His strategy is each time to bet the portion of $\$ A$ to increase the value to $\$(N+1)$ or to bet all of $\$ A$ if the value of A is too small to increase the value to $\$(N+1)$. Thus for $N=9$ if $A=6$ then he would bet $\$ 4$ and if $A=2$ then he would bet $\$ 2$. The process ends when either John's amount A reaches $\$(N+1)$ and then he wins, or reaches $\$ 0$ and then he loses.

Find to three decimal places the probability John wins if $N=$
(a) 2
(b) 3
(c) 4
(d) 5
(e) Find, with proof, two values of $N, N>5$, such that John will either win or lose after no more than 4 bets.
(f) Find, with proof, a value of N such that the probability that John wins is greater than 0.99 .

2 Quadratic Equations With Roots Between 0 And 1

We consider quadratic equations of the form $a x^{2}-b x+c=0$, where a, b, c are positive integers and the two roots are real numbers in the interval $(0,1)$.
(a) If $a=6$ and $c=1$ find, with proof, all values of b such that both roots are in $(0,1)$
(b) If $a=5$ find all pairs (b, c) such that both roots are in $(0,1)$.
(c) Given $b^{2}-4 a c>0$ find with proof additional condition(s) relating a, b, c which are necessary and sufficient that both solutions of the equation are real numbers in $(0,1)$.

3. The Sum of 3 (6) Numbers Divisible by 3 (6) Problem

(a) Give 4 (not necessarily distinct) positive integers such that the sum of any 3 of the 4 is not divisible by 3 .
(b) Prove that any set of 5 (not necessarily distinct) positive integers includes 3 whose sum is divisible by 3 .
(c) Give 10 (not necessarily distinct) positive integers such that the sum of any 6 of the 10 is not divisible by 6
(d) Prove that any set of 11 (not necessarily distinct) positive integers includes 6 whose sum is divisible by 6 .

4. The Locus of Points Problem

(a) In the given figure, for $\theta=\pi / 4$, find an equation in terms of x, y for the locus of points \mathbf{P} for the values $\alpha, 0<\alpha<3 \pi / 4$. Sketch the graph of the equation for $0<\alpha<3 \pi / 4$.
(b) As in (a) find the equation, in terms of x, y, θ, of the locus of points \mathbf{P} for θ arbitrary, $0<\theta<\pi / 2$ and $0<\alpha<\pi-\theta$
(c) In (b) make a sketch and describe the graph of the equation for the case θ is a number approximately equal to 0 .

5. The Prime Number Problem

In this problem, all number symbols represent positive integers.
Given the equation $1 / x-1 / y=1 / n$:
(a) Find all solution pairs (x, y) if $n=6$; your solution should prove there are no others
(b) Prove that if n is a prime number then there is a unique solution pair (x, y).
(c) Prove that if n has k distinct positive integer divisors, including 1 but not n, then there are at least k different solution pairs (x, y).
(d) Find 4 solution pairs if $n=60$; your work should show how you arrived at your answer.

