

DAVID ESSNER FINALS XXIX 2009-2010

1. Oddity of Pairs of Success Fraction Sequences

This problem concerns the comparison of success fraction sequences of A and B over each of two time periods and the combined time periods. As an example: A has success 3 times in 4 tries in period 1 and 3 times in 5 tries in period 2; the sequence for A is then A $=[3 / 4,3 / 5,6 / 9]$: B has success 23 times in 32 tries in period 1 and 2 times in 5 tries in period 2 ; the sequence for B is then $B=[23 / 32,2 / 5,25 / 37]$. In this example A's success fraction was greater than B's in periods 1 and 2, but B's success fraction in the combined periods was greater than A's. This situation is called an Oddity.
Hereafter in this problem A and B will denote success fraction sequences; each fraction is greater than 0 . The pair (A, B) is an Oddity if A's success fraction is greater than B's in both of periods 1 and 2, but B's success fraction is greater than A's in the combined period.
(a) Given $\mathrm{A}=[1 / 2,2 / 3,3 / 5]$ and $\mathrm{B}=[1 / 3,(2 x-1) / 3 x, 2 x /(3 x+3)]$ determine the values of x for which (A, B) is an Oddity.
(b) If $\mathrm{A}=[4 / 7,5 / 9,9 / 16]$ find a B so that (A, B) is an Oddity.
(c) If $\mathrm{A}=[a / b, c / d,(a+c) /(b+d)]$ prove that if $a / b=c / d$ then there is no B such that (A, B) is an Oddity.
(d) If $\mathrm{A}=[a / b, c / d,(a+c) /(b+d)]$ and $a / b>c / d$ prove that there is a B such that (A, B) is an Oddity.

2. The Reciprocals Triple Problem

In this problem x, y, z will denote positive integers where $x>1, y>1, z \geq 1$ and $1 / x+1 / y=1 / z$. An example of an (x, y, z) triple for this equation is $(2,2,1)$ since $1 / 2+1 / 2=1 / 1$.
(a) For (a1) $x=3$ (a2) $x=7$ find a triple (x, y, z) such that $1 / x+1 / y=1 / z$.
(b) Determine for each of (b1) $x=6$ (b2) $x=9$ two triples (x, y, z) such that $1 / x+1 / y=1 / z$.
(c) Prove that if x is a prime number then there is a unique triple (x, y, z) such that $1 / x+1 / y=1 / z$.
(d) Prove that if x is not a prime number then there are at least two triples (x, y, z) such that $1 / x+1 / y=1 / z$.

3. The Unique Intersection Parabolas Problem

Given that parabolas $y_{1}(x)=a_{1} x^{2}+b_{1} x+c_{1}$ and $y_{2}(x)=a_{2} x^{2}+b_{2} x+c_{2}$ have exactly one point of intersection, at $x=0$:
(a) If $a_{2}>a_{1}$ prove that $y_{2}(x)>y_{1}(x)$ for all $x \neq 0$.
(b) If $a_{2}=a_{1}$ prove that $y_{2}(x)>y_{1}(x)$ for some values of x and $y_{2}(x)<y_{1}(x)$ for some values of x.
(c) If $a_{2}>a_{1}$ give an example in which the point of intersection
(c1) is the vertex of both parabolas.
(c2) is not the vertex of either parabola.
(d) If $a_{2}>a_{1}$ prove the vertex of $y_{2}(x)$ occurs at $x=0$ if and only if the vertex of $y_{1}(x)$ occurs at $x=0$.

4. The Two Operations Accessible Problem

Two operations: C (commute), A (addition) on the set of pairs of positive integers are to be defined by: $\mathrm{C}(x, y)=(y, x) ; \mathrm{A}(x, y)=(x, x+y)$. There is also an initial point I = (1,1). Strings of C's and A's, applied from right to left, will denote successive applications of C and A . For example $\mathrm{AACA}(\mathrm{I})=\mathrm{AAC}(1,2)=\mathrm{AA}(2,1)=\mathrm{A}(2,3)=$ $(2,5)$. No string will have two successive C's since CC $(x, y)=(x, y)$. A pair (x, y) will be called accessible if there is a string S such that $\mathrm{S}(\mathrm{I})=(x, y)$. Thus, from the above, $(2,5)$ is accessible. Two positive integers are relatively prime (rp) if their greatest common divisor is 1 .
(a) Find ACACAAA(I)
(b) Prove that if x and y are rp then so are (b1) x and $x+y$ (b2) x and $y-x$ if $y>x$.
(c) Prove that if (x, y) is accessible then x and y are rp.
(d) Prove, or use an algorithm to show, that if x and y are rp then (x, y) is accessible.
(e) Find, showing your work, a string S such that $S(I)=(12,19)$. Is this string unique? Explain

5. The Competition Problem

A and B play a series of points. Each point either A or B goes first; one of them is the winner and one is added to the score of the winner. The loser of a point goes first in the next point. If A goes first then the probability that A wins the point is $r, 0<r<1$; if B goes first then the probability B that wins the point is $s, 0<s<1$. It will be assumed that A initially goes first. The symbol p_{n} will denote the probability that A goes first on the $\mathrm{n}^{\text {th }}$ point; thus $p_{1}=1$.
(a) Find p_{3} in terms of r and s.
(b) Find a formula for $p_{\mathrm{n}+1}$ in terms of $p_{\mathrm{n}}, \mathrm{n}=1,2, \ldots$.
(c) Find a formula for p_{n} in terms of n . Express the answer in closed form; i.e. the number of arithmetic operations in the answer should not depend on n.

Note: The solutions to parts (d)-(f) are independent of the solutions or conclusions of parts (a)-(c).
(d) In terms of r and s find the probability t that A wins two points before B wins two points.
(e) Find: (e1) A formula for s in terms of r if A and B have equal probability of winning the first two points.
(e2) The range of r values for which the formula in (e1) is valid i.e. for which the value of s is between 0 and 1 .
(f) A and B play a best 3 of 5 series (the series ends when one player has scored three points and is then the winner). If $s=r$ and t is the probability calculated in part (d), find in terms of r and t an expression for the probability that A wins three points before B wins three points.

