In this problem x, n will denote positive integers. We say n divides $x^{2}-1$ if $\left(x^{2}-1\right) / n$ is a non-negative integer.
(a) Prove that if either $x=15 k+1,15 k+4,15 k+11$, or $15 k+14$ for some non-negative integer k, then 15 divides $x^{2}-1$.
(b) Prove that 7 divides $x^{2}-1$ if and only if either $x=7 k+1$ or $x=7 k+6$ for some non-negative integer k.
(c) Prove that if k is a non-negative integer, then n divides $(k n+x)^{2}-1$ if and only if n divides $x^{2}-1$.
(d) Describe all positive integers x for which 21 divides $x^{2}-1$.

21 points
(2) 2012

A ternary string of length n is a sequence $x_{1} x_{2} x_{3} \ldots x_{n-1} x_{n}$ where each term x_{i} is 0,1 , or 2 . We say 2012 is a substring if $x_{i}=2, x_{i+1}=0, x_{i+2}=1$, and $x_{i+3}=2$ for some i. For example, 12212012 is a ternary string of length 8 that ends with the substring 2012 while 22010211 is a ternary string of length 8 which does not contain 2012 as a substring.
(a) How many ternary strings of length 8 neither start with the substring 2012 nor end with the substring 2012 ?
(b) How many ternary strings of length 8 do not contain 2012 as a substring?
(c) How many ternary strings of length n have either no 0's or no 1's or at most one 2?
(d) How many ternary strings of length 2012 have the property that, other than x_{2012}, every term that is a 2 is the first term of a substring 2012.

(3) The Functional Equation Problem

Let f be a real-valued function of one variable that satisfies the equation
(*)

$$
[f(x+y)]^{2}+[f(x)]^{2}+[f(y)]^{2}-2 f(x+y) f(x) f(y)=1
$$

for all real numbers x and y.
(a) Show that $f(0)$ must equal either 1 or $-1 / 2$.
(b) Suppose $f(0)>0$. Prove that $f(x)=f(-x)$ for all x.
(c) Suppose for some $a>0$ that $f(a)=0$ and $f(x)>0$ for all $0 \leq x<a$. Determine the values of (i) $f(a / 2), \quad$ (ii) $f(a / 3)$ and $f(2 a / 3)$.
(d) Suppose $f(0)<0$. Prove that f must be a constant function.
(e) Verify that the following functions satisfy equation (*) above.
(i) $f(x)=\cos (x)$
(ii) $f(x)=\frac{2^{x}+2^{-x}}{2}$

(4) Drawing Red Balls

An urn has $2 n$ balls of which $k, 1 \leq k \leq n$, are red. Players A and B take turns drawing a ball (without replacement) at random from the urn until all k red balls have been drawn. Assume that Player A goes first.
(a) (i) In the case $n=5$ and $k=1$, calculate the probability that Player A draws the red ball.
(ii) In the case $n=5$ and $k=2$, calculate the probability that Player A draws the last red ball.
(iii) In the case $n=5$ and $k=2$, calculate the probability that Player A draws both red balls.
(b) For general n and k, calculate the probability that Player A draws all the red balls.
(c) In the case when $k=2$, calculate the probability that Player A draws the last red ball.
(d) In the case when $k=3$, determine which of the players, if either, has the greater chance of drawing the last red ball.

(5) The Tetrahedron Problem

The four faces of a regular tetrahedron, shown below, are all equilateral triangles with length 1 edges. Let T be the union of these triangles and let S be the enclosed solid.

The S-distance between two points a and b in S is the length of the straight line segment connecting the two points.
The T-distance between two points a and b in T is the shortest length of the paths contained in T connecting the two points.
A path in T connecting points a and b is a finite sequence of line segments

$$
\overline{P_{0} P_{1}}, \overline{P_{1} P_{2}}, \overline{P_{2} P_{3}}, \ldots, \overline{P_{n-1} P_{n}}
$$

where $a=P_{0}, b=P_{n}$, and the terminal point of one segment is the initial point of the next. The length of a path is the sum of the lengths of the constituent line segments.

(a) Let v be a vertex of T and let f be the center of the opposite face as shown in the figure.
(i) Show that the S-distance between v and f is $\sqrt{6} / 3$.
(ii) Show that the T-distance between v and f is $2 \sqrt{3} / 3$.
(b) Let e and e^{\prime} be midpoints of a pair of opposite edges of T as shown in the figure.
(i) What is the S-distance between e and e^{\prime} ?
(ii) What is the T-distance between e and e^{\prime} ?

The T-disk of radius r centered at a point c in the tetrahedron T, denoted $D_{T}(c, r)$, is the subset of points in T of T-distance r or less from c.
(c) Find the areas of the following T-disks of radius $\frac{1}{2}$.
(i) $D_{T}\left(v, \frac{1}{2}\right)$
(ii) $D_{T}\left(e, \frac{1}{2}\right)$
(d) Find the areas of the following T-disks of radius 1 .
(i) $D_{T}(v, 1)$
(ii) $D_{T}(e, 1)$

