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(1) 16 points The Sequence Pair Period Problem

Let j, k be positive integers with j < k. The sequence Sj,k = {(a0, b0), (a1, b1), (a2, b2), . . . } of
ordered pairs of integers satisfies the following conditions:

• (a0, b0) = (0, 0)
• If an ≥ bn then an+1 = an and bn+1 = bn + j.
• If an < bn then an+1 = an + k and bn+1 = bn.

The period P (j, k) of the sequence Sj,k is the least positive integer N such that aN = bN .
(a) For the sequence S3,5:

(i) Describe the values of n such that an = bn.
(ii) Determine a100.

(b) If k is a multiple of j, express P (j, k) in terms of j and k.
(c) Determine P (2, k) in terms of k.
(d) Show that if m is a positive integer then P (mj,mk) = P (j, k).
(e) If j is an even integer and k = j + 2 determine P (j, k) in terms of j.
(f) If j and k are relatively prime show that P (j, k) = j + k.
(g) Determine P (84, 105).

(2) 21 points The Sum with the Digit Sum Problem

A positive integer N is proper if there is a positive integer n such that N = n + S(n) where
S(n) is the sum of the (decimal) digits of n. If N = n + S(n) then we say n supports N . A
positive integer N is improper if no positive integer n supports N .
(a) (i) Show that if N is a proper integer with N < 100, then there is a unique integer n

that supports N .
(ii) Prove that if 10 < N < 89, then N is proper if and only if N + 11 is proper.

(iii) List the positive integers less than 100 that are improper.
(b) What is the smallest proper integer that is supported by two different integers?
(c) List all the proper integers N < 1000 for which N + 11 is not proper.
(d) Can a proper integer be supported by three positive integers? If not, why not? If so, what

is the smallest such proper integer?

(3) 20 points The After-Before Functions Problem

For fixed real numbers a and b, consider the set F of all real valued functions f defined on
the real line that satisfy

f(x) = af(x + 1) + bf(x− 1)

for all real numbers x.
We say such a function f is bounded if there exists a number M such that |f(x)| ≤ M for

every real number x.
(a) When a = b = 1, either find a function in F that is non-constant and satisfies f(x) ≥ 0 for

all real numbers x or show no such function exists.
(b) When a = b = 1, either find a function in F that is non-constant and bounded or show no

such function exists.
(c) When a = b = 1

2
, show that there are infinitely many functions in F that satisfy f(x) > f(y)

whenever x > y.
(d) When a = b = 1

2
, either find a function in F that is bounded and f(x) 6= f(x + 1) for some

real number x or show no such function exists.
(e) When a = 1

4
and b = 3

4
, either find a function in F that is not bounded or show no such

function exists.



(4) 21 points The Rotating Cube Problem
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Consider a cube with vertices labeled with the
numbers 1 through 8 and the seven following lines
through the cube. The lines passing through the
centers of opposite faces will be denoted by LA, LB

and LC as shown in Figure 1. The lines joining
vertices 1 and 6, 2 and 5, 3 and 8, 4 and 7 will be
denoted respectively by L16, L25, L38, L47. Line
L16 is shown in Figure 2.

In this problem, we will be rotating the cube
about these seven lines by certain angles, and these
lines will move with the cube. Let us say a rotation is a cube-rotation if the set of vertices is
preserved as a whole, though individually the vertices may change positions. For example,
the rotation of the cube about the line LA by 90◦ in the direction indicated in Figure 1 is a
cube-rotation, and the line LB moves to where the line LC was.

(Two rotations that differ by a full rotation will be considered equivalent.)

(a) (i) What angles of rotation about the line LA give cube-rotations? Use the direction
given in Figure 1.

(ii) For each cube rotation about LA, make a table to record the changes of the vertices.

(E.g
1 2 3 4 5 6 7 8
8

indicates vertex 1 moved to where vertex 8 was.)

(b) (i) What angles of rotation about the line L16 give cube-rotations? Use the direction
given in Figure 2.

(ii) For each cube rotation about L16, make a table to record the changes of the vertices.
(c) Consider the cube-rotation about the line L16 by 120◦ in the direction indicated in Figure

2 and the resulting positions of the vertices.
(i) Among the six other lines LA, LB, LC , L25, L38, and L47, find a pair of lines so that a

rotation around the first line followed by a rotation around the second line will result
in the vertices of the cube being in the same position as the 120◦ cube-rotation about
the line L16. Is this pair unique?

(ii) Must the two rotations in the previous problem be cube-rotations?
(d) Is there a sequence of cube-rotations for which we have the following partial table of vertex

changes?
1 2 3 4 5 6 7 8
7 5 1

(e) If for each finite sequence of cube-rotations we record the resulting changes of vertices in a
table, show there are at most 24 different tables obtained.

(5) 21 points The Folding Paper Problem

A square sheet of paper lies flat on a table. The paper is perfectly folded in half once, keeping
half of the paper in place on the table, to make a rectangle. This new rectangle is two paper
layers thick. This new rectangle is then folded in half again, keeping half of the rectangle in
place on the table, to make another rectangle. This rectangle is now four paper layers thick.
Observe that after these two folds, the bottom layer of paper is a rectangle that has not moved
from its original position in the original square. We say such a rectangle is obtained from the
two folds.

For the rest of this problem, by fold we mean a perfect fold in half where one half is not moved
as in the description above.
(a) What rectangles in the original square can be obtained as the bottom layer of some sequence

of two folds?

(b) For each of the rectangles in part (a), how many ways can the original square be folded to
obtain that rectangle?

(c) Consider dividing the original square into a 16× 16 grid of smaller squares.
(i) How many folds are needed to obtain one of these smaller squares?

(ii) Show that each of these smaller squares can be obtained by a sequence of folds.

(iii) What is the maximum number of ways a rectangle formed by 2 of these smaller squares
may be obtained by a sequence of folds?

(iv) Which squares formed by 4 of these smaller squares can be obtained by a sequence of
folds?

(d) For a given positive integer N , consider dividing the original square into a 2N × 2N grid of
squares. Among the rectangles formed from some number of these smaller squares, which
ones can be obtained by a sequence of folds?


