David Essner Exam 7 1987-1988

1. Given a set of four numbers, if one is 20 , another is 40 , the other two differ by 4 and the average of the four numbers is 35 , then the largest number in the set is
(a) 40
(b) 41
(c) 42
(d) 43
(e) 44
2. If the lines $a x+b y=c$ and $d x+e y=f$ are perpendicular then
(a) $a e=-1$
(b) $c=-1 / f$
(c) $a d+b e=0$
(d) $a f+d c=0$
(e) $a b=-1 / d e$
3. If the system of equations $x+y+z=6$

$$
x-y+z=4
$$

$$
x+\quad r z=5
$$

has more than one solution for x, y, z then $r=$
(a) 5
(b) 4
(c) 1
(d) 0
(e) -2
4. Given that x is a small positive number and y is a large (in magnitude) negative number then $\frac{1 / x+y-5}{2 / x-4 y+2}$ is
(a) near $1 / 2$
(b) near $1 / 4$
(c) near $-5 / 2$
(d) near -1/4
(e) cannot tell from the given information
5. If $y=10^{8}+1$ and $x=10^{3}-1$ then $\frac{1}{1 / x-1 / y}$ is near
(a) 10^{-5}
(b) 10^{11}
(c) 10^{3}
(d) $10^{3 / 8}$
(e) 10^{5}
6. If the graph of $x^{2}+(y-3)^{2}=10$ is shifted 4 units to the right and 5 units down then it contains the point
(a) $(5,1)$
(b) $6,-1$)
(c) $(2,0)$
(d) $(6,-3)$
(e) $(3,2)$
7. John wishes to simulate the drawing of a card from a standard deck of 52 cards by repeatedly tossing a coin. What is the fewest number of times the coin must be tossed in order that different cards may be represented by different sequences of heads and tails?
(a) 6
(b) 9
(c) 12
(d) 18
(e) 26
8. Given that the implication "If P then Q ' is false then which of the following implications must also be false?
(a) If Q then P (b) If Q then (not P) (c) If $(P$ and $Q)$ then Q
(d) If (not P) then $(P$ or $Q)$ (e) If (not Q) then (not $(P$ or $Q)$)
9. An amount of $\$ 1,000$ is invested for one year at an annual rate of interest of 9%. At the end of the year 30% of the earned interest is withdrawn for payment of income tax. The value of the investment is then
(a) $\$ 1,060$
(b) $\$ 1,027$
(c) $\$ 1,600$
(d) $\$ 1,063$
(e) $\$ 1,021$
10. Tom and Bill together run a relay for a total of 4 miles. Bill runs at 6 mph and Tom at 8 mph . If Tom runs for twice as much time as Bill, for how many hours did Bill run?
(a) $5 / 32$
(b) $1 / 3$
(c) $3 / 16$
(d) $2 / 11$
(e) $5 / 19$
11. Given that B and C are integers from 0 to 9 inclusive and the product of the three digit integer $B 2 C$ and the two digit integer $C B$ is 23,871 then $B+C=$
(a) 10
(b) 9
(c) 5
(d) 13
(e) 7
12. Given that the second term of a geometric series is $1 / 3$ and the fourth term is $4 / 27$ then the third term is
(a) $8 / 27$
(b) $4 / 9$
(c) $5 / 27$
(d) $4 / 81$
(e) $2 / 9$
13. Five circles are drawn in the plane, dividing the plane into regions (two points are in the same region if they are the endpoints of a line segment which does not intersect any of the circles). What is the largest possible number of regions?
(a) 32
(b) 28
(c) 22
(d) 15
(e) 8
14. If $2^{\left(x^{n}\right)}=y$ then x is the following exponent of 2 (each log has base 2)
(a) $\frac{\log y-1}{n}$
(b) $\frac{\log (\log y)}{n}$
(c) $\log (y / n)$
(d) $\frac{\log y}{\log n}$
(e) $\log (\log (n y+1))$
15. If $x, y>0$ and y / x is large then $\sqrt{y-x}$ is approximately
(a) $\sqrt{y}-\sqrt{x}$
(b) $y-\frac{x}{2 \sqrt{y}}$
(c) $\frac{\sqrt{x}}{4 y^{2}}$
(d) $\sqrt{y}-\frac{x}{2 \sqrt{y}}$
(e) $\sqrt{y}-\sqrt{x / y}$
16. The line in the Cartesian plane through the point (a, b) and having slope 3 intersects the circle $x^{2}+y^{2}=1$ in at least one point provided
(a) $|b-a| \leq \sqrt{10}$
(b) $a^{2}+b^{2} \leq 9$
(c) $|a-3 b| \geq 2$
(d) $|b| \leq|9 a+1|$
(e) $\left|a^{2}-b^{2}\right| \leq 3 \sqrt{2}$
17. How many integers between 1 and 10,000 inclusive have each of $2,3,5,7$ as a single divisor? (e.g. 2 but not 2^{2} divides such an integer)
(a) 12
(b) 19
(c) 26
(d) 36
(e) 47
18. If $0<x<1$ and $S=1+x+x^{2}+x^{3}$ then which of the statements I,II,III must be true?

$$
\begin{array}{lll}
\text { (I) } S>1 / x & \text { (II) } S<\frac{1}{1-x} & \text { (III) } S<\frac{7}{1+x}
\end{array}
$$

(a) I,III only
(b) II only
(c) III only
(d) none (e) all three
19. Given the equation $4 x+3 y=529$ the number of solution pairs (x, y) where x and y are positive integers is
(a) 7
(b) 17
(c) 23
(d) 33
(e) 43
20. A sequence of integers is such that the sum of any two succesive integers is positive and the sum of any three successive integers is negative. The maximum value for n is
(a) 2
(b) 3
(c) 4
(d) 6
(e) larger than 6
21. For each integer $I=1,2,3, \ldots, 10$ if I is odd then person $I+1$ walks twice as far as person I, and if I is even then person $I+1$ walks $1 / 3$ as far as person I. If person 10 walks 1 mile then person 1 walks how many miles?
(a)3232323232
(b) $(1 / 2+3)^{5}$
(c) $(3 / 2)^{10}$
(d) $(2 / 3)^{10}$
(e) $81 / 32$
22. A round robin tournment is one in which each team plays each other team exactly once. How many games are played in a round robin tournament of 8 baseball teams?
(a) 64
(b) 56
(c) 32
(d) 28
(e) 15
23. If $i=\sqrt{-1}$ then among all complex numbers $z=a+b i$ such that $z^{3}=i$ the largest value of b is
(a) $1 / 3$
(b) $1 / 4$
(c) $2 / 3$
(d) $1 / 2$
(e) $3 / 2$
24. An urn contains 3 black balls and 3 red balls. A ball is drawn from the urn; it is returned to the urn only if it is red. A second ball is drawn from the urn; it also is returned to the urn only if it is red. A third ball is drawn from the urn; the probability it is red is
(a) $1 / 2$
(b) $2 / 3$
(c) $63 / 100$
(d) $113 / 180$
(e) $121 / 200$
25. If the polynomial $x^{3}+b x^{2}+c x+d$ has all real roots, the sum of the roots is 4 , the product of the roots is -6 , and one of the roots is 3 then $\mathrm{c}=$
(a) -3
(b) 5
(c) -4
(d) 1
(e) cannot tell from the given information
26. A robot can walk in steps of 1,2 , or 3 feet. In how many ways can a robot walk 6 feet?
(a) 11
(b) 16
(c) 24
(d) 30
(e) 36
27. Given the difference equation $f(n)=f(n-1)-2 f(n-2)$ then $f(n)=$
(a) $f(n-3)-4 f(n-1)$
(b) $-f(n-2)-2 f(n-3)$
(d) $f(n-1)-5 f(n-3)$
(e) $f(n-2)-4 f(n-3)$
28. If M, N, D are integers, where $D>1$, then $M \equiv N \bmod D$ provided $M-N$ is divisible by D. Given that $M \equiv N \bmod D$ and $P \equiv Q \bmod D$ then of

$$
\begin{array}{ll}
\text { (I) } M+P \equiv(N+Q) \bmod D & \text { (II) } M P \equiv N Q \bmod D \\
\text { (III) } M Q \equiv N P \bmod D & \text { (IV) } M N \equiv P Q \bmod D
\end{array}
$$

which are not necessarily true?
(a) II,III only
(b) I,IV only
(c) III only
(d) IV only
(e) all must be true
29. The value of x in the Figure is
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) $3 / 2$
(d) $\sqrt{5}-1$
(e) $\sqrt{3} / 2$

30. In the Figure if $A F=10, G H=15, D F=6, A B / / D C, A D / / E C / / F G, A D \perp A B$, and $G H \perp B C$ (where // denotes 'is parallel to' and denotes \perp 'is perpendicular to') then the area of $A B C D$ is
(a) 206
(b) 186
(c) 174
(d) 166
(e) 150

