David Essner Exam 9 1989-1990

1. Given a set of three numbers, if the average of all three is 80 , the averge of the first two is 76 , and the first is 10 more than the second, then the smallest number of the three is
(a) 71
(b) 73
(c) 75
(d) 77
(e) 79
2. If $x=1-i$, where $i^{2}=-1$, is a root of a polynomial $P(x)=0$ with real number coefficients then $P(x)$ is divisible by
(a) $x^{2}-2 x+2$
(b) $x^{2}+x+1$
(c) $x^{2}-2 x-4$
(d) $x^{2}-x+1$
(e) $x^{2}+1$
3. If the integers m, n follow the pattern in the sequence

$$
1,3,2,6,4,10,7,15,11,21, m, n \text { then } m+n=
$$

(a) 36
(b) 38
(c) 40
(d) 42
(e) 44
4. Let k be a positive integer and S the sum of k successive positive integers. Then S is divisible by k
(a) always
(b) never
(c) if and only if k is even
(d) if and only if k is odd
(e) none of (a)-(d)
5. Jack’s current payroll deductions are 30% of his salary. If his current salary is increased by 10% and his current payroll deductions are increased by 15% then the percent increase in the net amount of his paycheck will be nearest what integer?
(a) 4
(b) 5
(c) 6
(d) 8
(e) 12
6. Eight baseball teams play in a double elimination tournament. (a team is eliminated when it has lost two games; all but one team is eliminated). The maximum number of games in the tournament is
(a) 15
(b) 18
(c) 21
(d) 24
(e) 26
7. If g is the greatest common divisor of 8547 and 4810 then the sum of the digits of g is
(a) 1
(b) 5
(c) 7
(d) 10
(e) 13
8. Given an isosceles triangle with area 1 and one angle 120°, the area of the triangle formed by joining the midpoints of the sides is
(a) $1 / 2$
(b) $1 / 3$
(c) $1 / 4$
(d) $\sqrt{2} / 4$
(e) $\sqrt{3} / 4$
9. Bill and John made a series of bets, each bet $\$ 1$ more than the previous bet. Bill won the first 30 bets, John won the last 20 bets and they broke even. The amount of the first bet was
(a) $\$ 0.40$
(b) $\$ 2.25$
(c) $\$ 9.50$
(d) $\$ 15.75$
(e) $\$ 35.50$
10. Given (I) if $x>3$ then $y<7$ and (II) either $x<2$ or $y>9$ then
(a) $x<2$
(b) $y \geq 7$
(c) $x \leq 3$
(d) $x>y$
(e) none of (a)-(d)
11. How many integers between 1 and 100 can be written as a product of two different prime numbers?
(a) 15
(b) 19
(c) 22
(d) 26
(e) 30
12. Given that the sum of the first and third term of a geometric series is 2 , and the second term is 1 less than the first term, then the sum of all possible values for the first term is
(a) 0
(b) 2
(c) $\sqrt{5}$
(d) $2+\sqrt{6}$
(e) $\sqrt{3}-1$
13. If $a / b<c / d$ where a, b, c, d are positive numbers , then which number must be between a / b and c / d ?
(a) $\frac{c / d-a / b}{2}$
(b) $\frac{a+c}{2(b+d)}$
(c) $\frac{a+d}{2(b+c)}$
(d) $\frac{a+3 c}{b+3 d}$
(e) $\frac{a+2 d}{b+2 c}$
14. If the three lines $a x+b y=c, d x+e y=0$, and $x+y=1$ all have a common point of intersection then
$\begin{array}{lll}\text { (a) } a d+b e=c & \text { (b) } a e+b d=c & \text { (c) } d c-d b+e a-e c=0\end{array}$
$\begin{array}{ll}\text { (d) } d a-d c+e c-e b=0 & \text { (e) } c(d+e)=a+b\end{array}$
15. If $\cos (x-y)=\sqrt{6} / 3$ and $\tan y=\sqrt{2} / 2,0<x, y<\pi / 2$ then $\cos x=$
(a) $2 / 3$
(b) $\sqrt{2} / 5$
(c) $\sqrt{6} / 8$
(d) $\sqrt{3} / 2$
(e) $1 / 3$
16. Three dice are rolled. the probability that exactly two different numbers occur is
(a) $1 / 3$
(b) $5 / 12$
(c) $5 / 9$
(d) $11 / 16$
(e) $71 / 216$
17. John walked tree times from town A to town B. If his average speed for the first time was r mph (miles per hour), for the second time was 2 r mph , and for the third time was 3 r mph then his average speed in mph for the three trips was
(a) 2 r
(b) $4 \mathrm{r} / 3$
(c) $11 \mathrm{r} / 6$
(d) $18 \mathrm{r} / 11$
(e) $7 \mathrm{r} / 3$
18. Starting with a square of area 1 , a circle is inscribed in the square and a square is then inscribed in the circle; a circle is then inscribed in the resulting square and a square in the circle and the process is repeated for a total of 5 pairs of inscribings. The area of the final square is
(a) $\sqrt{2} / 48$
(b) $\pi / 96$
(c) $\sqrt{924}$
(d) $\sqrt{5} / 64$
(e) $1 / 32$
19. If the integer w satisfies the equation $\log _{2}\left(\log _{3}\left(\log _{2} w\right)\right)=1$ then the sum of the digits of w is
(a) 4
(b) 6
(c) 8
(d) 10
(e) 12
20. The graph of the equation $y=3 x+5$ is shifted 2 units to the right and 4 units up; it is then rotated 90° counterclockwise about the origin. The equation of the resulting graph is
(a) $x+3 y-3=0$
(b) $2 y=5 x+9$
(c) $2 x+5 y=3$
(d) $4 x+9 y=7$
(e) $3 x+9 y+7=0$
21. An amount of money is invested at an annual rate of r compounded 4 times per year. At what annual rate compounded 2 times per year would the same investment produce the same interest?
(a) $2 r$
(b) $r+r^{2}-r^{4}$
(c) $r+r^{2} / 8$
(d) $r+r^{2}+r^{3} / 4$
(e) $42 r / 41$
22. An urn contains 10 balls numbered $0,1,2,3,4,5,6,7,8,9$. Three balls are drawn from the urn (no balls are returned to the urn). The probability the sum of the three numbers on the balls drawn is less than 9 is
(a) $1 / 7$
(b) $2 / 15$
(c) $193 / 720$
(d) $11 / 60$
(e) 29/120
23. The ratio $3^{100} / 10^{x}$ is a number between 1 and 10 if $x=$
(a) 17
(b) 29
(c) 47
(d) 59
(e) 78
24. Let $f(n)$ be a sequence of numbers defined by:
$f(1)=1$ and $f(n)=f(n-1)+2$ if n is even and $f(n)=f(n-1) / 2$ if n is odd.
Then $4-f(100)=$
(a) $(1 / 2)^{100}$
(b) 2^{98}
(c) $(1 / 2)^{98}$
(d) $(1 / 2)^{49}$
(e) $(1 / 4)^{29}$
25. For what value of $a>1$ do the two tangent lines from the point $(a, 0)$ to the circle $x^{2}+y^{2}=1$ meet at right angles?
(a) 2
(b) $\sqrt{2}$
(c) $3 / 2$
(d) $\sqrt{3}$
(e) $\sqrt{3} / 2$

26 Container A has two gallons of $r \%$ solution and container B has 2 gallons of $s \%$ solution. One gallon is taken from A and poured into B; one gallon is then taken from B and poured into A. The percent solution in A is then
(a) $(2 r+s) / 3$
(b) $(r+s) / 2$
(c) $(3 s+2 r) / 5$
(d) $(3 r+2 s) / 5$
(e) $(5 r+6 s) / 11$
27. For $f(x)$ a real valued function define
$f^{2}(x)=f(f(x))$ and $\mathrm{f}^{n+1}(x)=f\left(f^{n}(x)\right)$ for $n=2,3, \ldots$.
If $f(x)=x+3$ then $f^{10}(x)=$
(a) $10 x+30$
(b) $x+30$
(c) $10 x+3$
(d) $x^{10}+3^{10}$
(e) $x^{10}+30$
28. Given three real numbers x, y, z if $x+y-z$ is a negative number large in magnitude, $x-y-z$ is a very small positive number and $x+y+z=1$ then
(a) $y>x>0$
(b) $x>0>y$
(c) $z>y>x$
(d) $z>y>0$
(e) $z>0>x$
29. The value $\left(10^{10}+1\right)^{10}-10^{100}$ is best approximated by 10^{x} where $x=$
(a) 91
(b) 101
(c) 1001
(d) 11
(e) 19
30. In the expansion of $\left(1+a+a^{2}+a^{3}+a^{4}\right)^{10}$ the coefficient of a^{3} is
(a) 48
(b) 64
(c) 81
(d) 127
(e) 220

