David Essner Exam 12 1992-1993

1. The sum of the last 5 digits of 25 ! ($=1 \times 2 \times 3 \times . . . x 25)$ is
(a) 25
(b) 20
(c) 10
(d) 5
(e) 0
2. A green die and a red die are rolled. What is the probability the number on the green die is greater than the number on the red die?
(a) $1 / 2$
(b) $1 / 3$
(c) $17 / 36$
(d) $4 / 9$
(e) $5 / 12$
3. Given three numbers, the average of the first two is 16, of the first and third is 12 and of the second and twice the third is 19 . The average of the three numbers is
(a) 13
(b) 14
(c) 15
(d) 16
(e) 17
4. Gloria's Floral Shop now makes a profit of $\$ 10$ on each dozen roses. If the price is reduced by 10% then they will make a profit of $\$ 8$. What would be the price of the roses after the 10% reduction?
(a) $\$ 14$
(b) $\$ 16$
(c) $\$ 18$
(d) $\$ 20$
(e) $\$ 22$
5. The statements $x \geq 3$ and (if $y \geq 7$ then $x<3$) imply
(a) $y<7$ and $x \geq 3$ (b) $x+y>10$
(c) $y<3$ or $x>7$
(d) $y \leq 7$ and $x>3$
(e) $y=7$ or $x=3$.
6. The system of equations $x-2 y+3 z=a$

$$
3 x+y+4 z=a
$$

$$
5 x-3 y+10 z=b
$$

can be solved for x, y, z provided
(a) $a=2 b$
(b) $b=3 a$
(c) $b=2 a$
(d) $a=3 b$
(e) $a=b$.
7. Jar A has 10 ounces of a 20% solution and jar B has 30 ounces of a 10% solution. Five ounces from jar A and x ounces from jar B are poured into an empty jar to give a 12% solution. Then $x=$
(a) 12
(b) 15
(c) $35 / 2$
(d) \quad (e) $45 / 2$
8. John and Bill run a 1,000 foot race. Bill runs at a constant speed. John runs at .8 the speed of Bill for the first 600 feet and x times the speed of Bill for the rest of the race. If they end in a tie then $x=$
(a) $4 / 3$
(b) $5 / 3$
(c) $5 / 4$
(d) $8 / 7$
(e) $8 / 5$
9. Tom and Jack play a series of games. Initially Jack has $\$ 5$ and Tom has $\$ 2$. For each game if Jack loses he gives Tom $\$ 2$ (or $\$ 1$ if it is his last dollar); if Tom loses he gives Jack $\$ 1$. If Tom gets Jack's last dollar(s) after n games, then n cannot be
(a) 12
(b) 13
(c) 14
(d) 15
(e) 16 .
10. If x is a large positive number then $\frac{\log _{10} x}{x}$ is
(a) near 0 and positive
(b) a large positive number
(c) a very large negative number
(d) near 1
(e) near 0 and negative.
11. How many integers between 1 and 500 are both a perfect square and the sum of three consecutive even integers?
(a) none
(b) 1
(c) 3
(d) 6
(e) 10
12. If a sum of money is invested at a rate r compounded 2 times per year then in order that the sum double in one year r must equal
(a). 75
(b) .5
(c) $\sqrt{2} / 2$
(d) $2(\sqrt{2}-1)$
(e) $\frac{\sqrt{2}+1}{4}$
13. Suppose the Yankees and Dodgers play 7 games, with one team winning 4 and the other 3 ; the team that wins 4 wins the last game. In how many ways can this happen?
(a) 40
(b) 56
(c) 70
(d) 84
(e) 124
14. If $\log _{10} b=c$ and $\log _{b} c=d$ then $d=$
(a) 10^{c}
(b) $c \log _{10} c$
(c) $\log _{10}(1 / c)$
(d) $\frac{\log _{10} c}{c}$
(e) $10^{1 / c}$
15. Given that $4 x^{3}+8 x^{2}-11 x-15$ has $x=3 / 2$ for one root, then the sum of all its roots is
(a) $-7 / 2$
(b) -2
(c) 0
(d) $9 / 2$
(e) 6
16. The value (1.01) ${ }^{10}$ is best approximated by
(a) 1.10462
(b) 1.10512
(c) 1.10396
(d) 1.10628
(e) 1.10814
17. If $a_{0}=1, a_{n}=\frac{a_{n-1}}{3}$ for n odd and $a_{n}=a_{n-1}+1$ for n even then if n is a large number the product of a_{n} and a_{n+1} is near
(a) 1
(b) $2 / 3$
(c) $3 / 4$
(d) $5 / 3$
(e) $5 / 4$.
18. Given triangle $A B C$ has area $1, \angle A=45^{\circ}$, and $\angle B=30^{\circ}$, if x is the length of the altitude to side $A B$ then $x^{2}=$
(a) $\sqrt{6} / 4$
(b) $\frac{\sqrt{3}+\sqrt{2}}{4}$
(c) $1 / \sqrt{3}+1 / \sqrt{2}$
(d) $2 / \sqrt{6}$
(e) $\frac{2}{\sqrt{3}+1}$
19. Given triangle $A B C$ with $\angle C=90^{\circ}$, let D be a point on $A B$ and E a point on $A C$ so that $D E$ is parallel to $B C$. If $A D=E C=2$ and $A E=1$ then the area of the triangle is
(a) $9 \sqrt{3} / 2$
(b) $5 \sqrt{2}$
(c) 6
(d) $3+\sqrt{2}$
(e) $2+\sqrt{3}$
20. The product of the x coordinates of all points which lie on both of the graphs of $|x-y|=3$ and $x^{2}+y^{2}=29$ is
(a) 0
(b) 87
(c) 100
(d) 7569
(e) -87
21. If $(M+2 N) \equiv 4 \operatorname{Mod} 6$ and $(2 M+N) \equiv x \operatorname{Mod} 3$, then x could be which of the following numbers?
(a) 30
(b) 32
(c) 34
(d) 36
(e) 40
22. The population of a large country has a continuous growth rate so as to double every 12 years. If x is the population in 1992 then the population in 1996 will be
(a) $4 x / 3$
(b) $\frac{4 x}{\log _{2} 12}$
(c) $\log _{12}(4 x)$
(d) $(2)^{1 / 3} x$
(e) $(4)^{1 / 12} x$
23. Given a circle of radius 8 , what is the largest odd integer which is less than the largest odd integer which is less than the ratio of the circumference to the diameter of the circle?
(a) 1
(b) 3
(c) 5
(d) 7
(e) none of (a),(b),(c),(d).
24. The parabola $y=x^{2}$ is tangent to the circle $x^{2}+(y-1)^{2}=C$ if $C=$
(a) 1
(b) $4 / 5$
(c) $3 / 4$
(d) $2 / 3$
(e) $1 / 2$.
25. Which number is the largest?
(a) 30^{20}
(b) 4^{100}
(c) $\log _{2} 1,000,000,000,000$
(d) $999,999^{3}$
(e) 30 !
26. If $S_{n}=1+2+2^{2}+2^{3}+\ldots+2^{n}$ then the smallest integer n for which $S_{n}>50,000$ is
(a) 9
(b) 15
(c) 22
(d) 42
(e) 56
27. If x, y, z are positive numbers such that $3<x y<4,4<x z<5,5<y z<6$ then
(a) $x>\sqrt{2}$
(b) $y>5 / 2$
(c) $z<\sqrt{3}$
(d) $y<\sqrt{2}$
(e) $x<3 / 2$.
28. The sum of the digits of the largest prime number which divides the integer 14,280 is
(a) 6
(b) 8
(c) 11
(d) 13
(e) 15
29. The units (last) digit of 7^{50} is
(a) 1
(b) 3
(c) 5
(d) 7
(e) 9.
30. Let $A B C D$ be a parallelogram with area 1 and let E be a point on side $C D$. If triangle $B C E$ has area $1 / 6$, side $A D$ has length 2 , and segment $E D$ has length 1 then the length of $C D$ is
(a) 3
(b) $4 / 3$
(c) 2
(d) $6 / 5$
(e) $3 / 2$

