David Essner Exam 13 1993-1994

1. A student took four exams, each time doubling the score of the previous exam. If the average of the four exams was x then the score on the first exam was $c x$ where $c=$
(a) $1 / 4$
(b) $2 / 9$
(c) $4 / 15$
(d) $3 / 16$
(e) $7 / 24$
2. If $x=6 \sin \pi(3 t+4)$ is the x coordinate of a point at time t minutes, then x has value 0 every s seconds where $s=$
(a) 10
(b) 15
(c) 20
(d) 30
(e) $\pi / 6$.
3. Let a, b, c be sides of a triangle with respective opposite angles A, B, C. If $a=10, b=6$ then there is exactly one triangle with
(a) $c=3$
(b) $A=\pi / 6$
(c) $B=\pi / 3$
(d) $C=\pi / 4$
(e) none of (a)-(d)
4. For real numbers a, b let A be the statement $a b \geq 0$ and B the statement $|a+b|=|a|+|b|$. Let C be the statement 'A implies B ' and D the statement ' B implies A '. Then which of the following is true?
(a) both C and D
(b) neither C nor D
(c) C but not D
(d) D but not C
(e) none of (a)-(d).
5. Given the parabola $y=x^{2}+a x-a^{2}$ the y coordinate of the vertex is
(a) $3 a / 2$
(b) $-2 a / 3$
(c) $a+1$
(d) $-5 a / 4$
(e) $2 a / 3$
6. Given a triangle with length of sides $3,4,5$ the radius of the circumscribed circle is
(a) $\sqrt{6}$
(b) 2
(c) $9 / 4$
(d) $7 / 3$
(e) $5 / 2$.
7. Teams A and B play a sequence of games; each game the probability that A wins is $2 / 3$. What is the probability that A will win 2 games before B wins 2 games?
(a) $2 / 3$
(b) $8 / 9$
(c) $15 / 16$
(d) $20 / 27$
(e) $74 / 81$
8. The difference of 100 and $\sqrt{100^{2}-1}$ is near $1 / k$ where $\mathrm{k}=$
(a) 10
(b) 200
(c) 500
(d) 4000
(e) 5500
9. On January 1 of two consecutive years a man invests $\$ 100$ at an annual rate of r compounded 2 times per year. At the end of two years if V is the total value of the investment then $V / 100$ is approximately (assume r is a small number):
(a) $3 r+2$
(b) $2 r+3$
(c) $2(r+1)$
(d) $\frac{3 r+1}{2}$
(e) $\frac{4 r+1}{2}$
10. If $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are positive integers which satisfy the equations

$$
\begin{aligned}
& w=3 x+2 \\
& x=7 y+5 \\
& y=8 z+3
\end{aligned}
$$

then the sum of the digits of the smallest possible value of w is
(a) 5
(b) 8
(c) 10
(d) 14
(e) 17
11. If $\log _{a} 16=3$ and $\log _{b} 4=7$ then $\log _{a} b=$
(a) $3 / 7$
(b) $64 / 21$
(c) $21 / 64$
(d) 21
(e) $3 / 14$
12. Jars A,B,C each have 100 grams of 20% solution and jar D has 40 grams of 5% solution. If x grams from A are put in B, then x grams from B are put in C and then x grams from C are put in D, the resulting solution in D is 10%. Then $x=$
(a) 20
(b) 24
(c) $82 / 3$
(d) $65 / 4$
(e) $\sqrt{426}$
13. Bill runs 100 yards at an average rate of r and another 100 yards at an average rate of s. His average rate for the 200 yards is
(a) $\frac{r+s}{2}$
(b) $\frac{r s}{25}$
(c) $\frac{200}{r+s}$
(d) $\frac{50(r+s)}{r s}$
(e) $\frac{2 r s}{r+s}$
14. A store purchases 100 coats for $\$ 5000$. Suppose they sell x coats at $\$ 80$ each, then y coats reduced to $\$ 40$ each, and then z coats at a clearance price of $\$ 20$ each (all of the coats now being sold). If the sales of the coats exceeds the cost then
(a) $x+y>120$
(b) $4 x+y>240$
(c) $x+5 y>200$
(d) $3 x+y>150$
(e) $2 x+3 y>190$
15. The sum of the real roots of $x^{3}+(\pi-1) x^{2}-\pi=0$ is
(a) 0
(b) 1
(c) $\pi / 2$
(d) $\pi-1$
(e) $\pi+1$
16. In the plane the three lines $y=2 x+1, y=x+a, y=3 x+b$ have a single point of intersection provided
(a) $a+3 \mathrm{~b}=2$
(b) $\mathrm{a}+\mathrm{b}=2$
(c) $a+2 b=3$
(c) $a-3 b=2$
(e) $2 a-\mathrm{b}=1$
17. The point on the line $y=2 x-3$ nearest the point $(2,5)$ is
(a) $(3,3)$
(b) $(3.2,3.4)$
(c) $(3.6,4.2)$
(d) $(3.8,4.6)$
(e) $(4,5)$
18. John has $\$ 2$ and Bill has $\$ 1$. They make a series of bets, each bet for $\$ 1$ and each equally likely to win, until one of them has no money. The probability that John wins all the money is
(a) $1 / 2$
(b) $2 / 3$
(c) $3 / 5$
(d) $11 / 16$
(e) $5 / 6$.
19. If $y=|3 x-1|-|2 x-5|$ then the (minimum) least value of y is
(a) $-13 / 3$
(b) -2
(c) -1
(d) $1 / 3$
(e) $5 / 2$
20. Given geometric sequences a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots if $a_{1}+b_{1}=3, a_{1} b_{2}=1, a_{2} b_{1}=4 / 3, a_{1} b_{3}=1 / 2$ and $b_{1}>a_{1}$ then $a_{3}=$
(a) $3 / 4$
(b) $1 / 8$
(c) $3 / 8$
(d) $9 / 2$
(e) $4 / 9$.
21. In how many ways can one select three integers from the set $\{0,1,2, \ldots, 9\}$?

Repetitions are permitted and ordering is not relevant (e.g. 1,5,5 and $5,1,5$ are the same selection).
(a) 64
(b) 160
(c) 220
(d) 360
(e) 520
22. Among the following integers which is the least value of n such that $3^{n}>2^{n+10}$?
(a) 8
(b) 12
(c) 15
(d) 18
(e) 24
23. Let $P(x)=(1+2 x)^{5}$ and $Q(x)=7 x-6 x^{3}+x^{5}$. If x is a large positive number then $\frac{P(x)}{Q(x)}$ is
(a) near 0
(b) near 32
(c) near 7
(d) near -42
(e) a large positive number
24. If an integer is initially assigned the value 1 and then n times is replaced by 1 more than twice its value, the resulting number is
(a) $2^{n+1}-1$
(b) $2^{n}+n$
(c) $2^{n-1}+3 n$
(d) $2^{n}+2 n$
(e) $2^{2 n+1}$
25. Suppose $P(x)$ is a polynomial with integer coefficients which when divided by $x^{2}-x-2$ gives a remainder of $3 x-11$ and when divided by $x^{2}-2 x-3$ gives a remainder of $(2 x+t)$. Then $t=$
(a) -2
(b) 0
(c) 3
(d) 7
(e) -12 .
26. Circle A has four times the area of circle B. If an arc of $\pi / 6$ on circle A has length x then an arc of $\pi / 4$ on circle B has length $c x$ where $\mathrm{c}=$
(a) $2 / 3$
(b) $3 / 8$
(c) $3 / 4$
(d) $3 / 2$
(e) $4 / 3$.
27. If d is the largest integer which leaves the same remainder when dividing into 983, 183 , and 1333 then the sum of the digits of d is
(a) 3
(b) 5
(c) 8
(d) 13
(e) 14 .
28. What positive number is such that the reciprocal equals one less than the number?
(a) $(1+\sqrt{2}) / 2$
(b) $(\sqrt{2}-1) / 4$
(c) $(1+\sqrt{5}) / 2$
(d) $(\sqrt{3}+\sqrt{2}) / 4$
(e) $(\sqrt{2}+\sqrt{5}) / 2$
29. If $a=0.999$ and $b=1.001$ then which of the following numbers is the largest?
(a) a^{b}
(b) b^{a}
(c) $a b^{2}$
(d) b / a
(e) $\frac{a+b}{2}$
30. The least common multiple of the set of integers $\{1,2,3,4,5,6,7,8,9,10\}$ is
(a) 2520
(b) 1260
(c) 840
(d) 420
(e) 10 !

