David Essner Exam 15 1995-1996

1. On a class test consisting of 3 questions, 20% got 3 right, 40% got 2 right, and 30% got 1 right. The average number of right answers was
(a) 1.5
(b) 2.0
(c) 1.8
(d) 1.7
(e) depends on the class size
2. Of 20 students 14 take math, 8 do not take English, and 4 take English but do not take math. How many are there who take math but do not take English?
(a) none
(b) 2
(c) 3
(d) 4
(e) 6
3. The lengths of each side of a cube are increased by 10%. By what percent is the volume then increased?
(a) 30
(b) 33.1
(c) 10
(d) $31 / 3$
(e) 130
4. There are how many positive integers x such that $\frac{8 x}{8+x}$ is an integer?
(a) none
(b) 1
(c) 2
(d) 3
(e) more than 3
5. The volume of a sphere in cubic feet is the same as the surface area of the sphere in square feet. The radius of the sphere in feet is
(a) $2 \pi / 3$
(b) $\pi / 2$
(c) 9
(d) 3π
(e) 3
6. If the four equations: $x+y+z=a$

$$
\begin{array}{r}
x-y+z=b \\
x-y-z=c \\
3 x-y+z=d
\end{array}
$$

have a solution for x, y, z then
(a) $a+b-c-d=0$
(b) $a+b+c-d=0$
(c) $a-b+c-d=0$
(d) $a-b-c+d=0$
(e) $a+b-c+d=0$
7. If an amount of money is invested at a rate of $100 r$ percent compounded annually, in how many years will the investment double? (all logs to the base 10).
(a) $\frac{\log 2}{\log (1+r)}$
(b) $\frac{1}{2^{r}-1}$
(c) $-\log \left(2^{r}-1\right)$
(d) $\log \frac{r}{2 r+1}$
(e) 2^{1-r}
8. John and Bill run a 1 mile race. Bill runs at a constant speed. If John runs $9 / 10$ as fast as Bill for a distance D and $11 / 10$ as fast as Bill for the remainder of the race then they will end in a tie if D is what part of a mile?
(a) $1 / 2$
(b) $9 / 11$
(c) $11 / 20$
(d) $9 / 20$
(e) $19 / 40$
9. Three different numbers are selected at random from the set of integers 1 through 10 . The probability that at least one of the integers is even is
(a) $2 / 3$
(b) $5 / 6$
(c) $7 / 8$
(d) $11 / 12$
(e) $15 / 16$
10. The first term of an arithmetic progression is 3 and the sum of the first ten terms of the progression is 120 . The fourth term of the progression is then
(a) 9
(b) 10
(c) 8
(d) 11
(e) $15 / 2$
11. Given a triangle with vertices A, B, C if $\tan A=2 / 3, \tan B=3 / 4$ and the length of the altitude from C to side $A B$ is 6 then the area of the triangle is
(a) 24
(b) 30
(c) 36
(d) 42
(e) 51
12. Ten pounds of a 10% solution is mixed with 20 pounds of a 20% solution, and the resulting mixture is added to x pounds of a 30% solution. If the final mixture is a 25% solution then $x=$
(a) 46
(b) 48
(c) 50
(d) 54
(e) 60
13.In the Cartesian plane the line through the point $(1,2)$ and tangent to the circle $x^{2}+y^{2}=1$ intersects the circle in the point
(a) $(-3 / 5,4 / 5)$
(b) $(-1 / \sqrt{2}, 1 / \sqrt{2})$
(c) $(-1 / 2, \sqrt{3} / 2)$
(d) $(-1 / 3,2 \sqrt{2} / 3)$
(e) $(-4 / 5,3 / 5)$
14. In the Cartesian plane if (a, b) is the point on the line $y=5 x$ which is nearest the point $(2,3)$ then $a=$
(a) $2 / 3$
(b) $17 / 26$
(c) $3 / 4$
(d) $11 / 19$
(e) 1
15. If the equation $x^{3}+a x^{2}+b x+c=0$ has a root $x=1$, which expression must equal 0 ?
(a) $2 a-b+c-1$
(b) $a+b-2 c+1$
(c) $a+b+c+1$
(d) $a-b+c-1$
(e) $a+2 b+c-1$
16. If x is near 0 then $\frac{\sqrt{1+x}-1}{x}$ is near what number?
(a) 0
(b) $2 / 3$
(c) 1
(d) $1 / 2$
(e) $/ 2$
17. If x is a large number then $\sqrt{x^{2}+1}-\mathrm{x}$ is best approximated by
(a) $\frac{2 x-1}{4 x^{2}}$
(b) $\frac{3 x-2}{6 x^{2}}$
(c) $\frac{4 x^{2}-1}{8 x^{3}}$
(d) $\frac{6 x^{2}-2}{9 x^{3}}$
(e) $\frac{8 x^{3}-50}{12 x^{4}}$
18. If 3 persons are selected at random, what is the probability they were born on different weekdays? (i.e. no two were born on the same weekday).
(a) $3 / 7$
(b) $6 / 7$
(c) $18 / 49$
(d) $30 / 49$
(e) $2 / 3$
19. If $\frac{x^{2}+9 x+7}{x^{2}(x+1)}=\frac{A x+B}{x^{2}}+\frac{C}{x+1}$ for all numbers x other than 0 and -1 then $A+B+C=$
(a) 2
(b) 4
(c) 8
(d) 10
(e) there are no solution values for A, B, C.
20. Given two concentric circles of radius 1 and 2, if a tangent to the smaller circle intersects the larger circle in points A, B then the length of the segment $A B$ is
(a) $2 \sqrt{2}$
(b) $2 \sqrt{3}$
(c) $\sqrt{2} \pi$
(d) $3 \pi / 2$
(e) $\frac{1+\sqrt{3}}{2}$
21. The sum $7 / 360+5 / 756$ equals
(a) $97 / 3600$
(b) $197 / 7560$
(c) $77 / 2520$
(d) $147 / 5640$
(e) $37 / 840$
22. If $a>1$ the sum of all solutions of $x^{\log _{a} x}=a^{2} x$ is
(a) $1+1 / a^{2}$
(b) $3 a^{2}-1$
(c) $2 a / 3$
(d) $2+2^{a}$
(e) $\frac{a^{3}+1}{a}$
23. If $x(0)=1$ and $x(n+1)=\frac{x(n)}{10}+1$ for $n=0,1,2,3, \ldots$ then for n a very large integer $x(n)$ is near
(a) 2
(b) $3 / 2$
(c) $10 / 9$
(d) 10
(e) infinity
24. If 3^{20} is divided by 11 the remainder is
(a) 1
(b) 3
(c) 5
(d) 7
(e) 9
25. Let x, y, z be positive integers such that x is odd but not both y and z are odd. Of the three statements: (A) $x y$ is even (B) $x+z$ is odd (C) $x+y z$ is odd exactly which ones must be true?
(a) A and B
(b) B and C
(c) A and C
(d) B only
(e) C only
26. The equation $x y=1000$ has how many solution pairs (x, y) where x and y are positive integers (Note: $(1,1000)$ and $(1000,1)$ are different solution pairs).
(a) 12
(b) 13
(c) 14
(d) 15
(e) 16
27. Initially Tom has $\$ 1$ and Bill has $\$ 2$. They wage a series of $\$ 1$ bets until one of them has all the money i.e. the $\$ 3$. Each bet the person with $\$ 2$ has probability $1 / 3$ of winning. What is the probability Bill wins all the money?
(a) $1 / 3$
(b) $2 / 3$
(c) $1 / 2$
(d) $3 / 5$
(e) $2 / 5$
28. Given $0<x<1$ let $y=x^{x}$ and $z=x^{y}$. Then
(a) $x<y<z$
(b) $x<z<y$
(c) $y<x<z$
(d) $z<x<y$
(e) $y<z<x$
29. Given the complex number $z=1+i$, where $i^{2}=-1$, then $z^{10}=$
(a) $10+10 i$
(b) $2^{10}(1+2 i)$
(c) $32 i$
(d) $10-5 i$
(e) 16
30. Given the values for a triangle: $\angle A=30^{\circ}$, side $b=10$ and side $a=x$, where side a is opposite $\angle \mathrm{A}$, then the values of x for which there are 2 possible triangles is described by
(a) $5<x<10$
(b) $x<5 / 2$
(c) $5 / 3<x<10$
(d) $5<x<5 / 3$
(e) $5 / 2<x<10$

