David Essner Exam 24 2004-2005

1. The class average of 30 students on an exam was 67.2 . If two students in the class scored 0 then the average of the other 28 students was
(a) 72.4
(b) 71.6
(c) 73.2
(d) 74
(e) 72
2. The initial price of a dress was $\$ x$ (where x is an integer). This price was reduced by 20% and the reduced price was reduced by another 20% to give a final price of $\$ 49.92$. The sum of the digits of x equals
(a) 10
(b) 11
(c) 13
(d) 15
(e) 17
3. If $f(x)=A x+B$ for all real numbers x and $f(2 x+1)=x$ then B equals
(a) $-1 / 2$
(b) $1 / 2$
(c) 2
(d) 1
(e) 0
4. In the Cartesian plane the area of the triangle with vertices $(0,0),(3,5)$ and $(6,2)$ is
(a) 10
(b) 12
(c) $27 / 2$
(d) $21 / 2$
(e) $40 / 3$
5. If $\mathrm{a} \neq 3$ and the points $(a, 3),(3, a)$ and $(1,4)$ are collinear then $\mathrm{a}=$
(a) $7 / 3$
(b) $3 / 2$
(c) 2
(d) 1
(e) $5 / 2$
6. Box 1 has 3 red and 2 green balls and box 2 has 4 red and 1 green ball. A box is selected at random and a ball is drawn. If the ball is red, what is the probability it came from box 1 ?
(a) $1 / 2$
(b) $2 / 5$
(c) $3 / 5$
(d) $7 / 10$
(e) $3 / 7$
7. There are how many integer pairs (x, y) such that $1 \leq x<y \leq 40$?
(a) 400
(b) 780
(c) 720
(d) 640
(e) 800
8. Initially glass A holds 10 ounces of water and glass B holds 10 ounces of wine. Then x ounces of water is transferred from A to B, mixed with the wine, and then x ounces of the mixture is transferred from B to A. If A now holds 8 ounces of water then x equals (in ounces)
(a) 2
(b) $4 / 3$
(c) 3
(d) $5 / 2$
(e) $7 / 3$
9. The integer 525 cannot be written as the sum of n consecutive integers for which value of n ?
(a) 3
(b) 4
(c) 5
(d) 6
(e) 7
10. The score of a certain multiple choice exam is computed as the number of right answers minus one fourth of the number of wrong answers. If the number of questions answered is N and the score is S then the number of right answers is
(a) $\frac{4 S+N}{5}$
(b) $\frac{5 S-N}{4}$
(c) $\frac{3 S+N}{4}$
(d) $\frac{4 S-N}{5}$
(e) $\frac{4 S-N}{3}$
11. Assuming both investments are compounded annually at the same rate, if the amount $\$ 100$ earns $\$ 100$ interest in 10 years then what amount S in dollars earns $\$ 200$ interest in 20 years?
(a) $200 / 3$
(b) 100
(c) 75
(d) 80
(e) 50
12. Two wires connect two poles so that there is a wire from the top of each pole to the base of the other pole. If the wires cross at a distance of 40 feet above the ground and one pole is 100 feet high then the other pole is how many feet high?
(a) 60
(b) 80
(c) $160 / 3$
(d) $200 / 3$
(e) $324 / 5$
13. Given a triangle with sides of length $2,3,4$, what is the value of $\sin A$ where A is the angle between the sides having lengths 2 and 3 ?
(a) $1 / 4$
(b) $3 / 7$
(c) $\sqrt{15} / 4$
(d) $\sqrt{10} / 4$
(e) $4 / \sqrt{29}$
14. Which of the sets of three numbers, as lengths of the sides of triangles, gives the triangle with the largest area?
(a) $6,7,8$
(b) $6,8,8$
(c) $6,8,9$
(d) $6,8,10$
(e) $6,8,11$
15. If the polynomial $P(x)=x^{3}-4 x^{2}+A x+30$ has $x=2$ as one root then the difference between the largest and smallest root of $P(x)$ is
(a) 2
(b) 4
(c) 10
(d) 6
(e) 8
16. Given the sequence $x_{1}, x_{2}, \ldots, x_{10}$ such that $x_{1}=1, x_{10}=100$ and $x_{n+2}=x_{n}+x_{n+1}$ for $n=$ $1,2, \ldots, 8$, then $x_{2}=$
(a) $101 / 9$
(b) $79 / 34$
(c) $11 / 2$
(d) $34 / 11$
(e) $111 / 79$
17. Tom and Jerry run a long distance race at respective rates of 11 and 9 miles per hour around an oval track which is $1 / 4$ mile in length. If they start at the same time, how many miles after the start does Tom run before he catches Jerry for the first time?
(a) $11 / 9$
(b) $11 / 4$
(c) $11 / 3$
(d) $11 / 8$
(e) $11 / 16$
18. The remainder of the division of $(1!+2!+3!+\ldots+17$! $)$ by 6 is
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
19. The sum of all integers in the set of numbers x such that $x(x-2)(x+3)(x+5)<0$ is
(a) -3
(b) -6
(c) 6
(d) 0
(e) 11
20. Given the numbers $a=2^{60}, b=3^{45}, c=5^{30}$ then
(a) $a<b<c$
(b) $c<a<b$
(c) $b<a<c$
(d) $b<c<a$
(e) $a<c<b$
21. If x, y, z are respectively in the ratio $3: 2: 1$ and $x+y+z=1$ then the ratio of $(1-x)$ to $(1-y)$ is
(a) $1: 2$
(b) $2: 3$
(c) $3: 4$
(d) $3: 5$
(e) $4: 5$
22. If a, b are real numbers and $a^{1 / 2}+b^{1 / 3}=1, a+b^{2 / 3}=5$ then a equals
(a) $9 / 4$
(b) 9
(c) $4 / 25$
(d) $16 / 9$
(e) 4
23. If $|x-1|<.001, x \neq 1$ then $p(x)=\left(x^{2}+3 x-4\right) /\left(x^{2}-x\right)$ must satisfy
(a) $p(x)<0$
(b) $0<p(x)<2$
(c) $2<p(x)<4$
(d) $4<p(x)<6$
(d) $p(x)>6$
24. For what number a does the following set of three equations have more than one solution for $x, y, z: \quad a x-2 y+5 z=0 ; x+2 z=1 ; 2 y+z=3$?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
25. If $A B C$ is a right triangle with length of side $A B=3$ and hypotenuse $A C=5$, then what is the length of the angle bisector $A D$ of $\angle B A C$ where D is on the side $B C$?
(a) $4 \sqrt{3} / 5$
(b) $5 \sqrt{3} / 4$
(c) $4 \sqrt{5} / 3$
(d) $3 \sqrt{5} / 2$
(e) $5 \sqrt{2} / 3$
26. If $1 / \log 2+1 / \log 4=1 / \log c$ then c equals (where the \log base is any number greater than 1):
(a) 2
(b) 8
(c) $1 / 8$
(d) $2^{1 / 3}$
(e) $4^{1 / 3}$
27. The equation $5 x+51 y=551$ has two solution pairs where x and y are positive integers. One solution pair is $(100,1)$. If (x, y) is the other solution pair then $x+y$ equals
(a) 43
(b) 62
(c) 55
(d) 75
(e) 67
28. A and B play a series of games; the winner of each game has probability 0.8 of winning the next game. If A wins the first game, what is the probability A will win the third game?
(a) .68
(b) .76
(c) .72
(d) .60
(e). 64
29. Two lines are each tangent to a circle of radius $r, r \geq 10$ and intersect at a right angle. If a point on the circle is at a distance of 2 from one of the lines and 9 from the other then r equals
(a) 11
(b) 17
(c) 15
(d) 13
(e) 18
30. The statement 'it is false that if $x<7$ then $x<4$ ' is true for those values of x which satisfy
(a) $x<4$ or $x \geq 7$
(b) $4 \leq x<7$
(c) $4<x \leq 7$
(d) $x<4$
(d) $x \leq 4$ or $x>7$
