. Answers and Brief Solutions to E1982

1. (d) $\log _{a} a^{10}=\log _{a} x^{2}$ gives $10=2 \log _{a} x$
2. (c) By similar triangles $|A C| /|A E|=|B C| /|D E|=3 / 4$; hence $|A C|=71 / 2$
3. (b) Four times each year the interest is $(12 / 4) \%=3 \%$ of the value, and each time the new value is the old value multiplied by 1.03 .
4. (d) The sum $=10+12+\ldots+100=[(10+100) / 2] \times 46$. Note $(10+100) / 2$ is the average term and 46 is the number of terms
5. (b) $n!/(n-2)!=[1 \times 2 \mathrm{x} \ldots \mathrm{x}(n-2) \mathrm{x}(n-1) \times n] /[1 \times 2 \mathrm{x} \ldots \mathrm{x}(n-2)]=(n-1) \times n$.
6. (d) The total score for the first 3 exams is $3 \times 90=270$ and for all 5 exams is $5 \times 88=$ 440 leaving 170 for the last two exams.
7. (c) $2^{10}=1024-10^{3}$ so $2^{40}=\left(2^{10}\right)^{4} \approx\left(10^{3}\right)^{4}=10^{12}$
8. (b) $(x-1)^{2}+y^{2}=x^{2}+(y-2)^{2}$ by the distance formula
9. (d) $f(1)=1>0>-1=f(2)$ so there is a root between 1 and 2
10. (e) $\sin \theta=3 / 5, \cos \theta=4 / 5$ and $\tan 2 \theta=\sin 2 \theta / \cos 2 \theta=(2 \sin \theta \cos \theta) /\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
11. (d) If d is the distance between A and B, and x is the unknown speed then $2 d / 35=d / 30+d / x$ is the total time. Solve for x.
12. (d) $e^{\pi i}=\cos \pi+i \sin \pi$
13. (a) $f(3)=f(2)-2 f(1)+f(0)=4-6+2=0 ; f(4)=f(3)-2 f(2)+f(1)=0-8+3=-5$;
$f(5)=f(4)-2 f(3)+f(2)=-5+4=-1$
14. (b) All powers of x must be even or all must be odd.
15. (b) $3^{*} 2=3 \times 2-3-2=1$; $\left(3^{*} 2\right) * 3=(3 * 2) \times 3-(3 * 2)-3$
16. (e) $x+2=3(x-2)$ or $x+2=-3(x-2)$
17. (e) Amounts of alcohol A and water W at successive stages are $12 W, 3 A \rightarrow 12 W$, $8 A \rightarrow 9 W, 6 A \rightarrow 9 W, 11 A \rightarrow 27 / 4 W, 33 A$.
18. (b) (See figure below) $|A D|=|B D|=1$ and the area of the triangle $A B C$ $=2(1 / 2)(1)|C D|$ gives $|C D|=1$. Hence $r=\sqrt{2}$ and $\angle A C B=90^{\circ}$ gives the area of the sector as $(90 / 360)(\pi)(\sqrt{2})^{2}$

19. (d) After n payments Ed has $1+2+\ldots+2^{n-1}=2^{n}-1$ and Dona has $22+15 n$. If $n \geq 7$ then $2^{n}-1 \geq 22+15 n$
20. (d) Divide the numerator and denominator of the fraction by x^{2}. For x large $1+3 / x+$ $12 / x^{2}$ is near 1 and $2+5 / x+3 / x^{2}$ is near 2 , so the fraction is near $1 / 2$.
21. (e) Let $x=.3212121 \ldots$. Then $100-x=32.1212 \ldots-.3212 \ldots=31.8$ so $x=31.8 / 99$ $=318 / 990=53 / 165$. Another method is $x=3 / 10+21 / 1000(1+1 / 100+$ $\left.1 /(100)^{2}+\ldots\right)=3 / 10+(21 / 1000)(100 / 99)$
22. (b) $a_{1}-b_{1}, a_{2}-b_{2}, \ldots$ is also an arithmetic progression, so the sum is $3+4+5+6+$ $7+8+9=42$
23. (See the figure) Triangles $A B C$ and $A^{\prime} B C$ both satisfy the conditions of the problem, but have different areas.

24. (d) If the roots of the polynomial are r_{1}, r_{2}, r_{3} then the polynomial is $\left(x-r_{1}\right)\left(x-r_{2}\right)(x-$ r_{3}), the constant term is $-r_{1} r_{2} r_{3}$ and the coefficient of x^{2} is $\left(r_{1}+r_{2}+r_{3}\right)$
25. (a) The expansion is the sum of terms $C(5, n)\left(x^{2}\right)^{n}\left(-2 / x^{3}\right)^{5}$ where $C(5, n)=5!/(n!(5-$ $n)$!). For the constant term, $2 n=3(5-n)$ so $n=3$ and the coefficient is $C(5,3)(-2)^{2}$
26. (c) If s is the side of the square then the radius of C is $s / 2$ and the side of E is $(2)(s / 2)(\sqrt{3} / 2)=s \sqrt{3} / 2$. The area of E is then $(\sqrt{3} / 2)(s \sqrt{3} / 2)(s \sqrt{3} / 4)=$ $3 \sqrt{3} s^{2} / 16$
27. (d) The inequality is equivalent to $a^{3} b+a b^{3}-a^{4}-b^{4} \geq 0$. Factoring gives $-\left(a^{3}-b^{3}\right)(a$ $-b) \leq 0$. If $a<b$ or $a>b$ then $\left(a^{3}-b^{3}\right)(a-b)>0$.
28. (d) This may be easily seen by sketching the ellipse and parabola and noting the four points of intersection.
29. (e) $(1+a)^{b}-1+b a$ if a is small, by the binomial theorem.
30. (c) The exponential 2^{x} grows more rapidly than powers of x or logarithms.
31. (b) If the point is (a, b) then $b=2 a$ and the line from $(4,2)$ to (a, b) should be perpendicular to $y=2 x$, so $(2 a-2) /(a-4)=-1 / 2$.
32. (d) See the figure. $|H K|=5+(1 / 2 \times 3) ;|C K|=1 / 2 \times 3=|K G|$ and therefore $|H G|=(169 / 4+9 / 4)^{1 / 2}$.

33. (e) If x is the given number then $x^{2}=(5+2 \sqrt{6})-2\left[(5+2 \sqrt{6})(5-2 \sqrt{6}]^{1 / 2}+\right.$ $(5-2 \sqrt{6})$
34. (d) If a divides both $n-11$ and $n+49$ then a divides $(n+49)-(n-11)=60$
35. (c) $a_{3}=7, a_{4}=15, a_{5}=31, \ldots$. In general $a_{n}=2^{n}-1$ so $\left(a_{n}\right)^{1 / n}=\left(2^{n}-1\right)^{1 / n} \approx\left(2^{n}\right)^{1 / n}=2$ for n large.
36. (a) If $p(x)$ is the polynomial then $p(x)=p(-x)$ for all numbers x, so if $p(x)$ has a minimum at $x=r$ then it has the same minimum at $x=-r$.
37. (b) $12=y^{2}-2 x y=y(y-2 x)$ so y divides 1 and is $1,2,3,4,6$ or 12 . Of these only $y=6$ makes x a positive integer.
38. (e) There are 13 denominations, so there are $13 \times((4 \times 3) / 2)=78$ possible pairs. The remaining 3 cards can be chosen in $(48 \times 44 \times 40) / 6$ ways so as to have no more pairs, giving $78 \times 8 \times 44 \times 40$ hands
39. (b) Only f_{1} is additive
40. (b) $Q_{n}=Q_{0} r^{n}$, where Q_{0} is the initial amount, Q_{n} the amount after n years, and r the growth rate. Since $Q_{8}=4 Q_{0}=Q_{o} r^{8}, r=4^{1 / 8}=2^{1 / 4}$. Solve $8 \sqrt{2}=2^{n / 4}$ for n.
