Answers and Brief Solutions to E1985

1. (b) Let $P(n)$ be the probability of exactly n heads; then $P(n)=\frac{4!}{n!(4-n)!}(1 / 2)^{\mathrm{n}}$. The

$$
\text { answer is } P(2)+P(3)+P(4)=(6+4+1)(1 / 16) \text { or } 1-[P(0)+P(1)]=1-[(1+
$$ 4)(1/16)].

2. (e) Let the first term be a and the ratio r. Then $a+a r=18$ and $a r-a=12$. Solving gives $a=3$ and $r=5$. The third term is $a r^{2}$.
3. (d) $A(N)$ is true for $N=1,2,3,4,5,6 . B(N)$ is equivalent to $(2 N+3)(N-1)>0$ which is false only if $N=1$.
4. (c) The quotient is approximately $5 /(-8 x)$ when x is very large.
5. (c) Exams 1 and 2 scores give a deficiency of $(92-82)+(92-90)=12$ points. Thus she must average $12 / 3=4$ points more than 92 on the next exam.
6. (b) The probability both numbers are the same is $1 / 10$; thus the answer is $(1 / 2)(1-$ 1/10).
7. (a) Let S, F be the original number of students and faculty. Then $S / F=30$. The new ratio is $S /(1.2 F)=30 / 1.2$.
8. (c) By similarity $x / 2=5 / x$ gives $x=4$ and $17 / A B=4 / 2$ gives $A B=17 / 2$.
9. (c) Let D be the trip distance and t_{1} and t_{2} the two times. Then $D / t_{1}=40$ and $2 D /\left(t_{1}+\right.$ $\left.t_{2}\right)=50$. Elimination of t_{1} gives $D / t_{2}=200 / 3$.
10. (d) The contrapositive of the given statement is "If not (B or not C)then A "; also "not (B or not C)" is equivalent to "not B and C ".
11. (d) Use the binomial approximation $(1+x)^{n} \cong 1+n x+\frac{n(n-1)}{2} x^{2}$. Note for example $(1.001)^{100}-1.1 \cong(50)(99) / 1000^{2}<.005$ and $(.9)^{-1}-1.1 \cong .01$.
12. (b) Possible prime divisors are $2,3,5,7,11,13$. The integers are $2 \times 3 \times 5,2^{2} \times 3 \times 5$, $2 \times 3^{2} \times 5,2 \times 3 \times 7,2 \times 3 \times 11,2 \times 3 \times 13,2 \times 5 \times 7$, and $2^{2} \times 3 \times 7$
13, (a) By geometry it is an intersection point of the circle $x^{2}+2 x+y^{2}=4$ and the line $y=$ $-x$. Solving $y^{2}-2 y+y=4$ gives $y=2$.
13. (d) Each repetition reduces the concentration by $1 / 2$. The result is $50(1 / 2)^{10}$ $\cong 50 / 1,000=.05$.
14. (c) Let $d_{j}, d_{b}, r_{j}, r_{b}, t_{j}, t_{b}$, respectively denote distances, rates, times of Joe and Bill.

Then $d_{j}=2 d_{b}, r_{j}=r_{b}+10, t_{b}=6, t_{j}=5, \mathrm{~d}_{\mathrm{j}}=\mathrm{r}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}}, \mathrm{d}_{\mathrm{b}}=r_{b} t_{b}$, give $r_{b}=50 / 7$.
16. (c) From the given conditions $13=a_{3}+a_{2}$ and $a_{3}=a_{2}+1$ yield $a_{2}=6, a_{3}=7$. Thus $a_{5}=13+7=20$ and $a_{6}=20+13=33$.
17. (a) Let C be Jack's cost. Then $C=P(1+r / 100)$ and $Q=C(1-s / 100)$.
18. (a) If A is the amount then $A(1+.12 / 4)^{4 \times 10}=1,000$.
19. (b) Letting \wedge denote exponent then $\mathrm{x}=6^{\log _{6} x}=6^{\log _{6} a+1}=6^{\log _{6} a}\left(6^{1}\right)=6$ a and $2^{\log _{a} x}=$ $8=2^{3}$ one may conclude $\log _{a} 6 a=3$. Thus $a^{3}=6 a$.
20. (e) (see the Figure below) The third side is $2 x$ where $x=10 \sin \left(45^{\circ} / 2\right)$. Letting $\theta=$ $45^{\circ} / 2$ then $\sin 2 \theta=2 \sin \theta \cos \theta$ gives $\sqrt{2} / 2=(2 \sin \theta) \sqrt{1-\sin ^{2} \theta}$ and solving gives

$\sin ^{2} \theta=(2-\sqrt{2}) / 4$.
21. (a) From the figure below $R^{2}-r^{2}=1$ and the area $=\pi R^{2}-\pi r^{2}$

22. (d) If the first equation is multiplied by 3 and the second equation is subtracted from that result, the equation obtained is $2 x+4 y+z=0$. Comparing with the third equation, if $t \neq 0$ then there are no solutions, and if $t=0$ there are infinitely many solutions.
23. (d) For any positive integer K there are two values of N, namely $N=2 K$ and $N=2 K+1$ such that $f(N)=K$. It follows that for all positive integers P and K there are 2^{P} values for N which satisfy $T^{P}(N)=K$.
24. (e) If r, s, t are the roots then the equation is $(x-r)(x-s)(x-t)=0$ and this gives $\mathrm{x}^{3}+(-r-s-t) \mathrm{x}^{2}+(r s+r t+s t) x-r s t=0$. Thus $A=-S$ and $C=-P$.
25. (e) The successive numbers are $(a+1)^{2}=4,(4+1)^{2}=25$ and $(25+1)^{2}=676$.
26. (c) Let a Tenset mean a sequence of 10 consecutive two or three digit numbers, the last two being in one of the ranges $01-10,11-20,21-30$, etc. Then each Tenset has at most one number whose digits total 10, and exactly one provided the sum of the hundreds and tens digits do not exceed 10 (the one exception is the Tenset 001-010). Thus the count includes 9 numbers less than 100, 10 in the 100's, 9 in the 200's, 8 in the 300 's, 7 in the 400's, etc. The sum is $9+10+9+8+7+6+5+4+3+2$.
27. (a) $N \bmod 100 \equiv b c$ and $b c \bmod 10 \equiv c$.
28. (a) Let $x^{70}+x^{10}+x-5=(x-1) Q(x)+A x+B$. Then $x=1$ gives $-2=A+B$ and $x=-$ 1 gives $-4=-A+B$. solve for A and B.
29. (b) From $(2 N)^{2}=4 N^{2}$ and $(2 N+1)^{2}=4 N^{2}+4 N+1$ it is seen that division of a perfect square by 4 gives a remainder of 0 or 1 . Thus division of $100 N+11$ by 4 gives a remainder of 3.
30. (a) The last digit of successive powers of 3 , starting with the first power, are
$3,9,7,1,3,9,7,1, \ldots$. Thus the last digit of 3 is 3 if $N \bmod 4 \equiv 2,7$ if $N \bmod 4 \equiv 3$ and 1 if $N \bmod 4 \equiv 0$. Since $1000 \bmod 4 \equiv 0$ the conclusion follows.
31. (b) $S_{N}=2(1+2+\ldots+N)=N(N+1)$. Since $N^{2}<S_{N}<(N+1)^{2}$, then S_{N} cannot be a perfect square.
32.(a) The case $M=2$ and $N=2$ eliminates $I I$; the case $M=3, N=1$ eliminates $I V$. The pairs $(M, N),(N, M+2 N),(N, M-N)$ all have the same set of common divisors.

