Answers and Brief Solutions to E1987

1. (c) Let F be the score on the first exam and d the difference on successive exams. Then $F+d / 2=78$ and $F+d=80$.
2. (a) The numerator is near 1 and the denominator is negative and near 0 .
3. (d) Subtract equation 2 from twice equation 1 to get $-y-3 z=7$ and add -2 times equation 1 to equation 3 to get $-y-3 z=t-16$. The answer follows from $7=t-16$.
4. (d) This is the number of solutions of the equation $i+j+k=6$ where i, j, k are nonnegative integers. For $i=0,1,2,3,4,5,6$ there are $7,6,5,4,3,2,1$ solutions.
5. (e) $.3(x+y)=y$ and $.6(x+y+z)=y+z$; eliminate x and simplify.
6. (a) $y=f(x-2)$ has the point $(5,7)$ and $y=3 f(x-2)$ has the point $(5,21)$.
7. (a) Substitution of $y=x+B$ gives $x^{2}+2 x+(x+B)^{2}=0$. This is a quadratic equation in x and setting the discriminant equal to 0 gives $B^{2}-2 B-1=0$. Solve for B.
8 (b) By the binomial theorem, $(1+x)^{1 / 2} \approx 1+x / 2$ if x is small,
9 (d) There are $3^{3}=27$ possible outcomes and $3!=6$ of these produce all three balls.
8. (d) $60 \bmod 31 \equiv 29,29 \bmod 11 \equiv 7$ and $46 \bmod 7 \equiv 4$.
11.(b) Let d be the distance from A to B. Then the total distance driven is $3 d$ and the total time is $d / 10+d / 40+d / 50$. The average speed is the total distance divided by the total time.
12.(e) If n is the number of pens and c the cost then $n(1.05) c=(3+n) c$.
13.(b) Summing the number of points whose x coordinates are $1,2,3, \ldots, 17$ gives $9+8+8$ $+7+7+\ldots+1+1$.
14.(c) If P is the amount of the investment then $3 P=P(1+r / 2)^{20}$
15.(a) The numbers are in succession the following powers of 2 : $32,48,24,128,48$. Thus the answer is 2^{128-24}.
16 (d) Let r, s be the roots. Then $m=-(r+s)$ and $n=r s$. If n is odd then each of r and s is odd and m is even.
9. (e) If he wins the last two bets then he wins $\$ 2$.
10. (d) By $I I, Q$ is true and P is false; only (d) is true in this case.
11. (a) Let d be the number of feet Bill runs; then Tom runs $d-100$ feet and hence 10/9 $(d-100)=d$.
20.(d) If x is the side opposite the 75° angle then, by the law of $\operatorname{sines}, x / \sin 75^{\circ}=$ $6 / \sin 60^{\circ}$. Apply $\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}+\cos 30^{\circ} \sin 45^{\circ}$.
12. (c) I is true since $S=a-(b-c)-d$ and III is true since $S=(a-b)+(c-d)$.
13. (a) $\log _{8} 3=1 / A$ gives $\log _{2} 3=3 / A$ and $\log _{16} 5=B$ gives $\log _{2} 5=4 B$; add $3 / A+4 B$.
14. (b) $F(1)=F(2)=1 ; F(3)=0 ; F(4)=F(5)=-1 ; F(6)=0 ; F(7)=F(8)=1$ implies
$F(n)=F(n-6)$ for $n>6$. Thus $F(1,000)=F(4)$.
15. (e) Method I: By a counting argument there are successively $1,8,21,20,5$ words with $0,1,2,3,4$ a's Method II: Let x_{n} be the number of n letter words using only a, b without two consecutive a 's; then $x_{n}=x_{n-1}+x_{n-2}$ and $x_{1}=2 ; x_{2}=3$.
25.(c) The region is a rectangle bounded by the lines $y=x+3, y=x-3$, and $y=2-x$, $y=-2-x$. The vertices are (5/2,-1/2), (1/2,-5/2),(-5/2,1/2), and (-1/2,5/2). The distances between opposite sides are $3 \sqrt{2}$ and $2 \sqrt{2}$.
16. (e) $x^{2}+x+(1-A)=0$; using the quadratic formula set the discriminant $1-4(1-A)$ $=0$.
17. (c) $1987=87 \times 22+19 x 3+16$. Each reduction of the multiplier of 87 by 1 causes an increase in the multiplier of 19 by 5 and a decrease in the remainder by 8 since $87=19 x 5$ -8 . Thus $1987=87 \mathrm{x} 20+19 \mathrm{x} 13$.
18. (c) $9!\approx 3.6 \times 10^{5}$; multiply this by $10^{11} \times 1.1 \times 1.2 \mathrm{x} \ldots 1.9 \times 2 \approx 6.7 \times 10^{12}$
19. (b) Starting with 1 as the smallest integer and increasing successively by 1 there are 10,9,9,8,8,7,7,..., 1 possibilities.
20. (d) $s=r x$ and $c=2 r \sin (x / 2)$; thus $s / c=x /(2 \sin (x / 2))$.
21. (e) $x / 1=4 / y=z / 5$ gives $x y=4$ and $y z=20$. Values $x=4, y=1, z=20$ give the maximum.
22. (c) A congruent triangle may be placed in the $x y$ plane with vertices $(0,0),(0,2),(1,0)$. If (x, y) is the point common to the rectangle and hypotenuse then $y=-2 x+2$. Thus the area of the rectangle is $A=x(-2 x+2)=-2(x-1 / 2)^{2}+1 / 2$.
