ANSWERS AND BRIEF SOLUTIONS TO E1988

1. (c) If $x, x+4$ are the other two numbers then $2 x+4+60=4(35)$ gives $x=38, x+4=$ 42.
2. (c) If $b \neq 0$ and $d \neq 0$ then the slopes of the lines are $-a / b$ and $-d / e$; setting $-\mathrm{a} / \mathrm{b}=$ $-1 /(-d / e)$ gives $a d+b e=0$. If $b=0$ then also $d=0$ and again $a d+b e=0$.
3. (c) Adding the first two equations gives $2 x+2 z=10$, or $x+z=5$. Thus $r=1$ by comparison with the third equation.
4. (e) The ratio depends on the relative values of $1 / x$ and y. e.g. if $1 / x=10^{10}$ and $y=10^{20}$ then the ratio is near $-1 / 4$.
5. (c) $1 / x$ is near 10^{-3} and $1 / y$ is near 10^{-8}. Thus $1 / x-1 / y$ is near 10^{-3} and the result is near 10^{3}.
6. (a) The equation of the translated graph is $(x-4)^{2}+(y+2)^{2}=10$. The values $x=5$, $y=1$ satisfies the equation.
7. (a) If a coin is tossed n times there are 2^{n} different possible outcomes. The least value of n such that $2^{n}>52$ is $n=6$.
8. (e) 'If P then Q ' is false only if P is true and Q is false. In (e), 'not Q ' is true and ' $n o t(P$ or $Q)$ ' is false.
9. (d) The interest is $\$ 90$ and the withdrawl for tax is $\$ 27$. Thus the value is $\$(1,000-90$ + 27).
10. (d) Let $t=$ Tom's time and $b=$ Bill's time. Then $6 b+8 t=4$ and $t=2 b$. Thus $6 b+$ $16 b=4$ gives $b=2 / 11$.
11. (a) Since $C B=1$, then (B, C) is one of the pairs $(9,9),(1,1),(3,7),(7,3)$. Only the latter gives the correct product.
12. (e) Let a be the first term and r the ratio. Then $a r=1 / 3$ and $a r^{3}=4 / 27$ give $r=2 / 3$ and $a=1 / 2$. The third term is $a r^{2}=2 / 9$.
13. (a) The regions are in 1-1 correspondence with sequences $c_{1} c_{2} c_{3} c_{4} c_{5}$ where each c_{i} is either 0 or 1 depending on whether or not points in the region are inside the circle C_{i} or not; there are 2^{5} such sequences.
14. (b) From $x^{n} \log 2=\log y, n \log x+\log \log 2=\log \log y$, and $\log \log 2=0$; the result follows
15. (d) By the Binomial Theorem $(y-x)^{1 / 2}=y^{1 / 2}+1 / 2(y)^{-1 / 2}(-x)+\ldots$
16. (a) The line with slope 3 through (a, b) has equation $y=3 x+c$ where $c=-3 a+b$.

Solving this simultaneously with $x^{2}+y^{2}=1$ gives $10 x^{2}+6 c x+(c-1)=0$ which has a solution if $c \leq 10$.
17. (a) Each such integer must be the number $2 \times 3 \times 5 \times 7=210$ multiplied by either 1 or a prime number between 11 and 47 inclusive. There are 12 such numbers 1,11,13,17,19,23,29,31,37,41,43,47.
18. (b) S is the sum of the first four terms of a geometric progression whose sum is $\frac{1}{1-x}$; thus $I I$ is true. If $x=1 / 2$ then I is false; if x is near 1 then S is near 4 and $\frac{7}{1+x}$ is near 7/2 making III false.
19. (e) $x=\frac{529-3 y}{4}$. Among the integers $529-3 y$ which are positive, those which are divisible by 4 are of the form $520-12 n$ where $n=1,2,3, \ldots, 43$.
20. (b) $-2,3,-2$ is such a sequence of 3 integers. Any negative integer must be followed by a positive integer, and any positive integer can be followed by at most one integer.
21. (e) Person 9 walks $1 / 2$ mile, person 8 walks $3(1 / 2)$ miles, person 7 walks $3(1 / 2)^{2}$ miles, etc. continuing to person 1 gives $(3)^{4}(1 / 2)^{5}$ miles.
22. (d) This is the number of combinations of 2 objects from 8 , which is 28.
23. (d) By DeMoivre's Theorem the values for b are $\sin \left(90^{\circ} / 3\right)=1 / 2, \sin \left(450^{\circ} / 3\right)=-1 / 2$ and $\sin \left(810^{\circ} / 3\right)=0$.
24. (e) The possible ordered selections are $R R R, R B R, B R R$, and $B B R$ where R is the drawing of a red ball and B of a black ball. These have respective probabilities $(1 / 2)^{3},(1 / 2)^{2}(3 / 5),(1 / 2)(3 / 5)^{2}$, and $(1 / 2)(2 / 5)(3 / 4)$ and their sum is $121 / 200$.
25. (d) If the roots are r, s, and 3 then $r+s=1, r s=-2$, and $c=r s+3 r+3 s$. The roots are $-1,2$ and 3 giving $c=1$.
26. (c) The solution is the number of sequences of $1,2,3$ which add to 6 .

Method I: By enumeration there are 13 which start with 1,7 which start with 2 and 4 which start with 3 .
Method II: If s is the number of sequences of $1,2,3$ which add to n, then $s_{1}=1, s_{2}$ $=2, s_{3}=4$ and $s_{n}=s_{n-1}+s_{n-2}+s_{n-3}$. In this difference equation s_{n-k} is the number of sequences that start with k and add to $n, k=1,2,3$.
27. (b) Substituting $n-1$ for n gives $f(n-1)=f(n-2)-2 f(n-3)$. Substitution from this for $f(n-1)$ in the original equation for $f(n)$ gives the result.
28. (d) I, II and III are true. For instance if $(M-N)=K D$ and $(P-Q)=L D$ then $M P=$ $(Q K+N L+K L D) D+N Q$ shows $I I$ is true. Also $D=5, M=6, N=1, P=7, Q=2$ shows $I V$ is not necessarily true.
29. (b) Using the law of sines, $x \sin 30^{\circ} / \sin 75^{\circ}=\sin 45^{\circ} / \sin 105^{\circ}$. Thus $x=$ $\sin 45^{\circ} / \sin 30^{\circ}$.

