ANSWERS AND BRIEF SOLUTIONS TO E1989

1. (d) The total score for the honor students is 80x30 = 2400 and for the math students is 86x16 = 1376. The total score for all is (30 + 16 – 10)x81 = 1376. The total duplicate score is 2400 + 1376 – 2916 = 860 for 10 students.

2. (a) If \(x > 0 \) the equation \(x^2 – 7x + 3x = 0 \) gives \(x = 0, 4 \). If \(x \leq 0 \) the equation \(x^2 + 7x + 3x = 0 \) gives \(x = 0, -10 \); the answer is 4 + (-10).

3. (c) \(S = 7(2 + 3 + 4 + \ldots + 28) = (7)(28)(29)/2 – 7. \)

4. (b) \(9! = 362,880 \) and \(10! = 3,628,800. \)

5. (c) \(b \cdot a = b + 2a \) and \(a \cdot b = a + 2b + 2c \) and \(a \cdot (b \cdot c) = a + 2b + 4c; \) \((a \cdot b) \cdot c = a + b + c - 4 = a \cdot (b \cdot c) \)

6. (d) If \(a \) is the first term and \(r \) the ratio than \(ar^2 = 3 \) and \(ar^6 = 48. \) Thus \(r = 2 \) and \(a = 3/4. \)

7. (d) Of any three successive integers one must be divisible by 2 and one (perhaps the same) by 3; hence the product is divisible by 6.

8. (c) Multiply the numerator and denominator by \(x; \) if \(x \) is small then the new numerator is near 5 and the new denominator is near –2.

9. (e) \((5/6)(2/3) = 5/6 \)

10. (c) The logic principle is ‘if \(p \) then \(q \)’ is equivalent to ‘(not \(p \)) or \(q \).’

11. (a) The third equation is the second equation minus the first equation so the equations are dependent. If \(y \) is eliminated from any two equations the result yields \(x = 3z + 4. \)

12. (b) The final mixture has \([(20)(.2) + (10)(.3)](x/30) + (10)(.4) = 7x/30 + 4 \) ounces of alcohol and \(x + 10 \) total ounces. Solve \(7x/30 + 4 = (.3)(x + 10). \)

13. (a) The altitudes meet \(2/3 \) of the distance from the vertex; thus the altitude length = \(3/2 \) and the area is \((2)(1/2)(3/2)(3\sqrt{3}/2)\)

14. (b) The exponents of \(x \) add to \(8 \) with the combinations \(3,3,2,0; 3,3,1,1; 3,2,2,1; 2,2,2,2 \) respectively with \(12,6,12,1 \) possibilities.

15. (d) \((x + i)(x – i) = x^2 + 1 \) divides the left side of the equation, and the quotient is \((2x - 3)(x + 4); \) thus \(3/2 \) and \(-4 \) are the real roots.

16. (d) After cancellation of the common terms the sum is \(1 + 1/2 - 1/10 - 1/11. \)

17. (b) By the binomial expansion, if \(x \) is small then \((8 + x)^{1/3} \approx 8^{1/3} + (1/3)(8^{-2/3})(x). \)

18. (e) \(\text{Substitute } x = .0036 \) to obtain the answer.

19. (d) Solve \(\log x + 2 \log y = 4, \log y – \log z = 3 \) and \(\log x + 3 \log z = -4 \) to get \(x = 4, y = 2 \) and \(z = 1/4. \)

20. (e) Adding the probabilities of the favorable cases black, red and red, red gives \((2/5)((3/5) + (3/5)(2/4). \)

21. (b) \(\cos 2x = 3 \cos^2 x – 1 = 1/4 \) gives \(\cos^2 x = 5/8; \) \(\cos 2x = 1 – 2 \sin^2 x = 1/4 \) gives \(\sin^2 x = 3/8; \) \(\tan^2 x = \sin^2 x/\cos^2 x \) gives the answer.

22. (e) The values of \(f(n) \) are respectively \(1, 2, 1/2, 1, 0, 0, undefined \) since \(f(5) = 0 \) and \(\log 0 \) is undefined. Therefore \(f(n) \) is undefined if \(n > 5. \)

23. (e) Bill can only break even if he wins the last two bets; John wins $9 if Bill wins the first two bets.

24. (c) \((1 + x)(1 – y) – 1 = x – y – xy. \) In (c), (d) the largest of the \(x, y \) terms is less than in the other cases; choose (c) since then \(xy \) and \(x – y \) have the same sign.
25. (a) \(f(50) = 2/7 + 1 = 9/7 \).
26. (d) The longest side of the triangle is \(21 \) or \(x \). If \(21^2 < 9^2 + x^2 \) and \(x^2 < 21^2 + 9^2 \), then all angles are acute; this is true for \(x = 19, 20, 21 \), and 22.
27. (a) If 3 divides \(n + 2 \) then 3 also divides \((n + 2) + 3k\) for all integers \(k \); thus 3 divides \(n - 1 \) which is a factor of \(n^2 + 6n - 7 \).
28. (c) If \(r \) is the annual rate of interest then \(A^{10} = 2 \) and \(10 \log A = \log 2 \) where \(A = (1 + r/365)^{365} \); solving \(A^x = 3 \) gives the answer.
29. (a) After the first four terms in the sum, each term is divisible by 5 and the sum of the first four terms is 35 which is also divisible by 5.
30. (a) Letting \(x = \angle BCD \) then also \(x = \angle ABE \). From triangle \(BCD \) it is seen that \(\tan x = \frac{3}{2} \) and hence \(\cos x = \frac{2}{\sqrt{13}} \); also \(\cos x = BE/4 \) from triangle \(ABE \). Therefore \(BE/4 = \frac{2}{\sqrt{13}} \).