## ANSWERS AND BRIEF SOLUTIONS TO E1989

1. (d) The total score for the honor students is $80 \times 30=2400$ and for the math students is $86 \times 16=1376$. The total score for all is $(30+16-10) \times 81=1376$. The total duplicate score is $2400+1376-2916=860$ for 10 students.
2. (a) If $x>0$ the equation $x^{2}-7 x+3 x=0$ gives $x=0,4$. If $x \leq 0$ the equation $x^{2}+7 x+$ $3 x=0$ gives $x=0,-10$; the answer is $4+(-10)$.
3. (c) $S=7(2+3+4+\ldots+28)=(7)(28)(29) / 2-7$.
4. (b) $9!=362,880$ and $10!=3,628,800$.
5. (c) $b^{*} a=b+2 a$ and $a * b=a+2 b$; $b \# a=b+a-2=a \# b$; $\left(a^{*} b\right) * c=a+2 b+2 c$ and $a^{*}\left(b^{*} c\right)=a+2 b+4 c ;(a \# b) \# c=a+b+c-4=a \#(b \# c)$
6. (d) If $a$ is the first term and $r$ the ratio than $a r^{2}=3$ and $a r^{6}=48$. Thus $r=2$ and $a=$ 3/4.
7. (d) Of any three successive integers one must be divisible by 2 and one (perhaps the same) by 3 ; hence the product is divisible by 6 .
8. (c) Multiply the numerator and denominator by $x$; if $x$ is small then the new numerator is near 5 and the new denominator is near -2 .
9. (e) $(5 / 6)(2 / 3)=5 / 6$
10. (c) The logic principle is 'if $p$ then $q$ ' is equivalent to '(not $p$ ) or $q$ '.
11. (a) The third equation is the second equation minus the first equation so the equations are dependent. If $y$ is eliminated from any two equations the result yields $x=3 z+4$.
12. (b) The final mixture has $[(20)(.2)+(10)(.3)](x / 30)+(10)(.4)=7 x / 30+4$ ounces of alcohol and $x+10$ total ounces. Solve $7 x / 30+4=(.3)(x+10)$.
13. (a) The altitudes meet $2 / 3$ of the distance from the vertex; thus the altitude length $=$ $3 / 2$ and the area is $(2)(1 / 2)(3 / 2)(\sqrt{3} / 2)$
14. (b) The exponents of $x$ add to 8 with the combinations 3,3,2,0; 3,3,1,1; 3,2,2,1; 2,2,2,2 respectively with $12,6,12,1$ possibilities.
15. (d) $(x+i)(x-i)=x^{2}+1$ divides the left side of the equation, and the quotient is $(2 x-$ 3) $(x+4)$; thus $3 / 2$ and -4 are the real roots.
16. (d) After cancellation of the common terms the sum is $1+1 / 2-1 / 10-1 / 11$.
17. (b) By the binomial expansion, if $x$ is small then $(8+x)^{1 / 3} \approx 8^{1 / 3}+(1 / 3)\left(8^{-2 / 3}\right)(x)$. Substitute $x=.0036$ to obtain the answer.
18. (e) Solve the equation $x^{2}+(3 x+4)^{2}=r^{2}$ for $x$ using the quadratic formula. The discriminant is $D=40 r^{2}-64$; set $D=0$ and solve for $r$.
19. (d) Solve $\log x+2 \log y=4, \log y-\log z=3$ and $\log x+3 \log z=-4$ to get $\mathrm{x}=4, \mathrm{y}=$ 2 and $z=1 / 4$.
20. (e) Adding the probabilities of the favorable cases black, red and red, red gives (2/5 ((3/5) + (3/5)(2/4).
21. (b) $\cos 2 x=3 \cos ^{2} x-1=1 / 4$ gives $\cos ^{2} x=5 / 8 ; \cos 2 x=1-2 \sin ^{2} x=1 / 4$ gives $\sin ^{2} x=3 / 8 ; \tan ^{2} x=\sin ^{2} x / \cos ^{2} x$ gives the answer.
22. (e) The values of $f(n)$ are respectively $1,2,1 / 2,1,0,0$, undefined since $f(5)=0$ and $\log 0$ is undefined. Therefore $f(n)$ is undefined if $n>5$.
23. (e) Bill can only break even if he wins the last two bets; John wins $\$ 9$ if Bill wins the first two bets.
24. (c) $(1+x)(1-y)-1=x-y-x y$. In (c), (d) the largest of the $x, y$ terms is less than in the other cases; choose (c) since then $x y$ and $x-y$ have the same sign.
25. (a) $f(50)=2 / 7+1=9 / 7$.
26. (d) The longest side of the triangle is 21 or $x$. If $21^{2}<9^{2}+x^{2}$ and $x^{2}<21^{2}+9^{2}$ then all angles are acute; this is true for $x=19,20,21$ and 22 .
27. (a) If 3 divides $n+2$ then 3 also divides $(n+2)+3 k$ for all integers $k$; thus 3 divides $n-1$ which is a factor of $n^{2}+6 n-7$.
28. (c) If $r$ is the annual rate of interest then $A^{10}=2$ and $10 \log A=\log 2$ where $A=$ $(1+r / 365)^{365}$; solving $A^{x}=3$ gives the answer.
29. (a) After the first four terms in the sum, each term is divisible by 5 and the sum of the first four terms is 35 which is also divisible by 5 .
30. (a) Letting $x=\angle B C D$ then also $x=\angle A B E$. From triangle $B C D$ it is seen that $\tan x=$ $3 / 2$ and hence $\cos x=2 / \sqrt{13}$; also $\cos x=B E / 4$ from triangle $A B E$. Therefore $B E / 4=$ $2 / \sqrt{13}$
