Answers and Brief Solutions to E1990

1. (a) Solve the equations $(x+y+z) / 3=80 ;(x+y) / 2=76 ; x=10+y$.
2. (a) $[x-(1-i)][x-(1+i)]$ is a factor of $P(x)$.
3. (e) $m=16, n=28$.
4. (d) $(n+1)+(n+2)+\ldots+(n+k)=k \frac{n+(k+1)}{2}$ and $(k+1) / 2$ is an integer if and only if k is odd.
5. (d) If S is the current salary and D the current deductions then $S-D=.7 S$ is the previous net amount and $1.1 S-(1.15)(.3 S)=.755 S$ is the new amount. The answer follows from (.755-.7)/.7 $\approx .08$.
6. (a) $7 \mathrm{x} 2+1=15$. Each team loses 2 games except the winner which loses 1 game.
7. (d) By the Euclidean Algorithm 8547/4810 leaves a remainder of 3737; 4810/3737 leaves a remainder of 1073; 3737/1073 leaves remainder of 518; 1073/518 leaves a remainder of 37; 518/37 leaves a remainder of 0 . Thus 37 is the greatest common divisor.
8. (c) The line segments divide the original triangle into 4 congruent triangles.
9. (c) If f is the initial bet then $f+(f+1)+(f+2)+(f+3)+\ldots+(f+29)=(f+30)+$ $\ldots+(f+49)$ gives $30 f+(29 \times 30) / 2=20 f+(49 \times 50) / 2-(29 \times 30) / 2$.
10. (c) If $x<2$ then no conclusion can be drawn form I; if $y>9$ then I implies $x>3$ is false.
11. (c) The following is the list of primes less than 50, each followed by the number of smaller primes which gives a product < 100: 2(0), 3(1), 5(2), 7(3), 11(4), 13(4), 17(3), 19(3), 23(2), 29(2), 31(2), 37(1), 41(1), 43(1), 47(1); these total 30.
12. (b) If a is the first term and r the ratio then $a+a r^{2}=2$ and $a r=a-1$. Solving for a gives $a=1+\sqrt{2} / 2$ or $a=1-\sqrt{2} / 2$.
13. (d) $a / b<c / d$ is equivalent to $a d<b c$. Similarly $\frac{a+3 c}{b+3 d}<c / d$ is also equivalent to $a d$ $<b c$ as is $\mathrm{a} / \mathrm{b}<\frac{a+3 c}{b+3 d}$.
14. (c) Add $-a$ times the last equation to the first, and $-d$ times the last equation to the second. Then $(b-a) y=c-a$ and $(e-d) y=-d$; equate the solutions for y.
15. (e) $\cos x \cos y+\sin x \sin y=\sqrt{6} / 3, \sin y=\sqrt{2} / \sqrt{6}, \cos y=2 / \sqrt{6}$ gives $\sqrt{2} / 2 \sin x=1-\cos x$; square both sides of the equation and use $\sin ^{2} x=1-\cos ^{2} x$.
16. (b) The probability exactly one number occurs is $1 / 36$ and that exactly three occurs is (5/6)(4/6); subtract their sum from 1.
17. (d) If d is the distance from A to B and t the total time then $t=d / r+d / 2 r+\mathrm{d} / 3 \mathrm{r}$ and the average rate is $3 d / t$.
18. (e) If the square has sides of length x then the inscribed circle has radius $x / 2$ and its inscribed square has area $x^{2} / 2$. Thus each pair of inscribings multiplies the area by $1 / 2$.
19. (c) $\log _{3}\left(\log _{2} w\right)=2 ; \log _{2} w=9$ and $w=512$.
20. (a) The shifts give $y-4=3(x-2)+5$; for the rotation replace x by $-y$ and y by x.
21. (c) If x is the unknown rate then $(1+r / 4)^{4}=(1+x / 2)^{2}$
22. (b) There are $(10 \times 9 \times 8) /(3 \times 2 \times 1)$ total combinations. Of those which add up to 8 or less, if the largest number is 7 there is 1 , if 6 then 2 , if 5 then 4 , if 4 then 5 , if 3 then 1 and if 2 then 1 ; these total 16.
23. (c) Successive squaring gives approximately for powers of 3: 1-3; 2-9; 4-80;
$8-6.4 \times 10^{3} ; 16-4 \times 10^{7} ; 32-1.6 \times 10^{15} ; 64-2.6 \times 10^{30}$. Multiply powers of $4,32,64$ to get approximately 3.2×10^{47}. Alternatively $3^{2}<10$ implies $3^{100}<10^{50}$ and $3^{5}>100$ implies $3^{100}>10^{40}$; by elimination 47 is only possible answer.
24. (d) $f(2)=4-1 ; f(4)=4-1 / 2 ; f(6)=4-1 / 4, \ldots, f(2 n)=4-1 / 2^{n-1}$; set $n=50$.
25. (b) Let P be the point of tangency above the x axis. Then the triangle formed by $(a, 0)$, P and the origin is an isosceles right triangle with a leg of length 1 ; the hypotenuse is $\sqrt{2}$.
26. (a) Amounts of solution are: Initially $A: r / 50$ and $B: s / 50$; after the first pouring A : $\frac{r}{100}$ and B : $\frac{2 s+r}{100}$; after the second pouring $A: \frac{r}{100}+\frac{2 s+r}{300}=\frac{4 r+2 s}{300}$. The answer is $\frac{4 r+2 s}{300} \times(1 / 2) \times 100$.
27. (b) Let $f^{2}(x)=(x+3)+3=x+6 ; f^{3}(x)=(x+3)+6=x+9$; etc.
28. (b) Let $x+y-z=-M, x-y-z=S$ where M is a large positive and S a small positive number. Then $x=\frac{S+1}{2}, \mathrm{y}=-\frac{M+S}{2}, \mathrm{z}=\frac{M+1}{2}$.
29. (a) By the binomial expansion the difference is approximated by $10 \mathrm{x}\left(10^{10}\right)^{9} \mathrm{x} 1$
30. (e) The expansion includes 10 products having one a^{3} and nine 1 's, $\frac{2 \times 10 \times 9}{2 \times 1}$ products having one a, one a^{2} and eight 1 's, and $\frac{10 \times 9 \times 8}{3 \times 2 \times 1}$ products having three a 's and 71 's.
Adding these numbers gives $10+90+120$.
