ANSWERS AND BRIEF SOLUTIONS TO E1991

1. (c) The sum of the scores is $3 \times 65+2 x 80+4 \times 90=715$. Divide this value by 9 to get 80.2 .
2. (a) Add the probabilities that the sum of both colored dice equals each of $2,3,4, \ldots, 12$. This is $\left(1^{2}+2^{2}+\ldots+6^{2}+\ldots+2^{2}+1^{2}\right) / 36$.
3. (a) The equations are dependent and may be reduced to an equivalent system of two equations. Substitute $x=a, y=b, z=c$ in these two equations and solve simultaneously with $a+b=1 / 7$.
4. (b) Since $x=1$ satisfies the equation, $x-1$ is a divisor of the given polynomial, and this division equals $(x-1)\left(x^{2}+1\right)^{2}$. Thus $x=1$ is the only real root; other roots are i and $-i$.
5. (c) The left side of the equation simplifies to x^{4}; thus $x^{4}=3 x^{2}$ from which $x=\sqrt{3}$.

Note the left side is not defined for $x=0$.
6. (e) There are 3 with the digits $0,0,5 ; \quad 6$ with $0,1,4 ; \quad 6$ with $0,3,2 ; \quad 3$ with $0,1,3$ and 3 with 1,2,2
7. (b) For any logical proposition p, ' p and not p ' is always false so the implication in
(b) is always true.
8. (c) This answer follows since $(2 \times 5 \times 3) \bmod 7=2$.
9. (d) By the binomial approximation $\sqrt{4+a}$ is approximately $4^{1 / 2}+(1 / 2)(4)^{-1 / 2} a+$ $(1 / 2)(-1 / 2)(4)^{-3 / 2} a^{2}$.
10. (c) If A is the amount of the investment then solve $3 A=A(1+r)^{10}$ for r.
11. (d) The original selling price is $1.5 x$ and the sales price is $1.5 x-(.1)(1.5 x)$.
12. (a) Let $a=$ the rate of Bill, $b=$ the time of Bill, $s=$ the rate of Tom and $t=$ the time of Tom. Then $5=a b=s t, s=4 a / 5$ and $b+t=2$. Solve for a.
13. (c) The sequence is $0,1,1 / 2,3 / 4,5 / 8,11 / 16,21 / 32.43 / 64, \ldots \ldots$ The numerator of $f(n)$ is $\frac{2^{n-1}}{3}$ and the denominator is 2^{n-1}
14. (e) The sequence is $2^{1}, 2^{2}, 2^{4}, 2^{8}, \ldots 2^{512}$. Since $2^{10}>10^{3}$ it follows that $2^{512}>10^{(51 \times 3)}$.
15. (d) The amount of solution in jar 1 after the two pourings is $(10-x)(.2)+$
$\frac{x(5+.2 x)}{10+x}$; set this equal to 3 and solve for x.
16, (b) If P is the point of intersection of $A C$ and the altitude from B to $A C$ then

$$
A C=A P+P C=2 \sqrt{3}+2
$$

17. (d) If a is the first term and n the difference between each term and the next then $10 a$ $+(1+2+\ldots+9) n=10+45 n=205$ and $a+3 n=16$. Solve simultaneously for a.
18. (b) If Tom wins the first bet and Bill wins the next two bets then Bill wins $\$ 2$.
19. (a) The quotient is near $(8 / 9)^{n}$ which is near 0 if n is large.
20. (e) Let $\left(b, b^{2}\right)$ be the intersection point on the parabola. Then the equations $y=x^{2}$ and $y+a=\frac{\left(b^{2}+a\right) x}{b}$ have a single solution. Eliminate y and solve the resulting quadratic equation for x and get the discriminant $\left(b^{2}-a\right)^{2}$; set this to 0 and get $b=\sqrt{a}$. The slope is $\frac{\left(b^{2}+a\right)}{b}=2 \sqrt{a}$.
21. (d) The number 3 divides the least common multiple of x and y if and only if 3 divides at least one of x and y. Thus count all pairs of which at least one is a 3,5 or 9 . 22. (e) (I) is true since $x^{2}<y^{4}<y^{3}$ and (III) is true since $x<y^{2}<y$ and $y<z^{3 / 2}<z$. (II) and (IV) are false for the values $x=.6, y=.8$ and $z=.9$.
22. (b) Let $y=z+n$ and $x=z+2 n$; then substitute in the given equation and solve for x. This gives $x=3 n, y=4 n$ and $z=5 n$ for any positive integer n in the solution set.
23. (a) The graphs are the circles with center $(0,2)$ and radius 2 and center $(4,5)$ and radius $\sqrt{k+41}$. Since the distance between the centers is 5 it follows that $k+41=9$. 25. (e) The altitude from B to $A C$ would be of length 5 , and this is more than the length of $A B$. Thus there can be no triangle with the given measurements.
24. (e) The quadrilaterals $A B E F$ and $A B C D$ are similar. Thus $B C / B E=A D / A F$, or $\frac{12}{x}=$ $\frac{1+x}{1}$; solving gives $x=3$.
25. (c) The shift gives the equation $(x-3) y=1$ and the rotation replaces x by $-y$ and y by x.
26. (b) The probability each team wins in exactly 5 games is $\left[4 x \frac{1}{2} \times\left(\frac{1}{2}\right)^{3}\right]\left(\frac{1}{2}\right)=1 / 8$
where 4 denotes the number of possible games for the one loss.
27. (a) There are 6 ways to pick the 5 winning numbers and for each of these ways there are 43 ways to pick the non-winning numbers.
28. (d) Multiply y by the conjugate $x+\sqrt{x^{2}-1}$ divided by itself to get $\frac{1}{x+\sqrt{x^{2}-1}}$ which is always decreasing and positive, and approaches 0 as x gets larger and larger.

Subscripts

Radicals

	$\sqrt{2}$	$\sqrt{3}$	$\sqrt{5}$	$\sqrt{6}$	$\sqrt{10}$	$\sqrt{7}$	$\sqrt{30}$	$\sqrt{65}$	$\sqrt{a b}$	\sqrt{x}
\sqrt{a}	$\sqrt{17}$	$\sqrt{x^{2}-1}$								

Math Symbols

$$
\begin{aligned}
& \neq \equiv \approx \angle \mid \cup \sim \sim \leq \\
& \text { Greek Symbols } \\
& \begin{array}{lllllllll}
\pi & \alpha & \beta & \delta & \varepsilon & \phi & \pi & \theta & \pi
\end{array} \\
& \cong \div \supset \times \square \Sigma
\end{aligned}
$$

Fractions

$\frac{1}{2}$

