Answers and Brief Solutions to E1992

1(b) If x is the number of quizzes then $180+280+40 x=.78(600+50 x)$
2(a) If b is the number of boys and g of girls then $b / g=5 / 3$ and $1.2 b / 1.3 g=(1.2 / 1.3)(5 / 3)$
3(c) Each roll the probability of a 2 or 5 is $1 / 3$;answer is (1/3) ${ }^{4}$
4(d) The given statement is equivalent to $y \geq b$ or $z \geq b$; the negation is equivalent to $y<b$ and $z<b$.

5(a) By appropriate addition and subtraction of equations one can obtain $0=c-d+a-b$.The original system is then equivalent to 3 equations in 4 unknowns which has infinitely many solutions.

6(d) Let d be the distance. Then $\frac{d}{2 r}+\frac{d}{2(3 r / 4)}=\frac{d}{2 s}+\frac{d}{2(5 s / 4)}$

7(c) Tom wins with the sequences of winners and associated probabilities $T T(1 / 4), T B T(1 / 8), B T T(1 / 8)$ and these add to $1 / 2$.

8(d) The amounts of water and alcohol at the various stages are:
[9,1];[9,2];[(90/11),(20/11)];[(90/11),(31/11)]
(we may ignore the last removal). The answer is $\frac{31}{31+90} \times 100$.
$9(e) 3+5+7$ is odd and not a prime; $3+5+11$ is a prime; $2+3+5$ is even
10(b) If L is the low value and H the high value of the possible numbers then Mary guesses $\frac{L+H}{2}$ if $L+H$ is even and $\frac{L+H+1}{2}$ if $L+H$ is odd. Then Mary's incorrect guesses reduce successively from 100 to $50,25,12,6,3,1$ possible numbers.

11(d) These are the numbers which are the squares of multiples of 3 i.e. squares of 3,6,9,12,15,18,21.

12(a) Since $\sin A=\sin B=4 / 5$ it follows that $a=b=5 / 2$ and the altitude divides c into two segments of length $3 / 2$ each.

13(a) The diagonals of $A B$ are diameters of the circle, and have length 2 . Thus the length of the sides of $A B C D$ are $\sqrt{2}$, the area of $A B C D$ is 2 and triangle $C D E$ has half this area. 14(e) Solve the equations simultaneously to get $(x-1)^{2}+x=r^{2}$ which is a quadratic equation in x. The discriminant is less than 0 if $r^{2}<3 / 4$.

15(e) $2 \log _{3}(x y z)=\log _{3}\left(x^{2} y^{2} z^{2}\right)=\log _{3} 27=3$.

16(b) The quotient is near $4 y /(-2 y)$
17(c) For $x=1$ there are 8 solutions; for $x=2$ seven solutions; \ldots, for $x=8$ one solution. Answer is $8+7+6+5+4+3+2+1$.

18(b) Form a triangle $O P Q$ where O is the center of the circle and P, Q are points on the circle, and A is the angle $P O Q$. Draw an altitude $P R$ from P to $O Q$. Then $P R=\sin A$, $Q R=1-\cos A$, and $(P Q)^{2}=(P R)^{2}+(Q R)^{2}$. Thus $x^{2}=\sin ^{2} A+(1-\cos A)=2(1-\cos A)$

19(e) $A B C=36 A+6 B+C$ is divisible by 4 only if $6 B+4$ is divisible by 4 which is not necessarily true in any of (a)-(d).

20(e) $P(1+.08 / 4)^{4}=P(1.02)^{4} \approx P\left[1+4(.02)+6(.02)^{2}\right]$ (Binomial Theorem)
21(d) $6=1+A+B+C$ and $0=8+4 A+2 B+C$. Division of $f(x)$ by $x-2$ gives
$x^{2}+(A+2) x+(B+2 A+4)$. The sum of the other two roots is $-(A+2)$. Hence $A=-3, B=-4$, $C=12$.

22(c) The simultaneous solutions of the two inequalities is represented graphically by the square with vertices $(-2,0),(0,-2),(2,0),(0,2)$. The maximum $x y$ occurs along the line $y=$ $2-x, 0 \leq x \leq 2$. The maximum value of $x(2-x)=1-(x-1)^{2}$ is 1 .

23(c) By the binomial theorem $1000^{1 / 3}=(1000+1)^{1 / 3} \approx$
$10+(1 / 3)(1000)^{-2 / 3}-(2 / 9)(1000)^{-5 / 3}=(10+1 / 300)-2 / 900,000$
24(c) If $N=4$ then $M^{2}-16 \equiv 1 \operatorname{Mod} 10$ implies $M^{2} \equiv 7 \operatorname{Mod} 10$ which is not possible for any integer M.

25(b) From the sequence $1,3,3 / 2,7 / 2,7 / 4,15 / 4, \ldots$ it is seen $a_{2 n-1}=\frac{2^{n+1}-1}{2^{n-1}}$ and $\mathrm{a}_{2 n+1}=$

$$
\frac{2^{n+2}-1}{2^{n}} . \text { Thus a99 }=\left(2^{51}-1\right) / 2^{49} \text { and } \mathrm{a}_{101}=\left(2^{52}-1\right) / 2^{50}
$$

26(a) This may be seen by sketching the graphs of $y=x+1, x \geq 2 ; y=-x+5, x \leq 2$ and $y=x-3, x \leq 5$ and $y=7-x, x \geq 5$.

27(e) For example if k is a positive integer then $\mathrm{k}^{2},(2 k)^{2},(4 k)^{2}, \ldots$ is such a geometric sequence.

28(a) The number must also divide $2(3 n+17)-3(2 n-8)=58$.
29(a) By substitution $y=c$ is also a root. By long division the function may be factored to $(y-c)\left(y^{2}+c y-1\right)$ and the sum of the roots of the quadratic factor is $-c$.

30(d) $S \geq 1 / x^{2}$ if $1 / x^{3}+1 / x^{2} \geq 2 / x^{3}$. Multiply by x and simplify to $(x-1)^{2} \geq 0$.

