Answers and Brief Solutions to E1992

1(b) If *x* is the number of quizzes then 180+280+40x = .78(600+50x)

2(a) If b is the number of boys and g of girls then b/g=5/3 and 1.2b/1.3g = (1.2/1.3)(5/3)

3(c) Each roll the probability of a 2 or 5 is 1/3; answer is $(1/3)^4$

4(d) The given statement is equivalent to $y \ge b$ or $z \ge b$; the negation is equivalent to y < b and z < b.

5(a) By appropriate addition and subtraction of equations one can obtain $0 = c \cdot d + a \cdot b$. The original system is then equivalent to 3 equations in 4 unknowns which has infinitely many solutions.

6(d) Let d be the distance. Then $\frac{d}{2r} + \frac{d}{2(3r/4)} = \frac{d}{2s} + \frac{d}{2(5s/4)}$

7(c) Tom wins with the sequences of winners and associated probabilities TT(1/4), TBT(1/8), BTT(1/8) and these add to 1/2.

8(d) The amounts of water and alcohol at the various stages are: [9,1];[9,2];[(90/11),(20/11)];[(90/11),(31/11)] (we may ignore the last removal). The answer is $\frac{31}{31+90}$ x 100.

9(e)3+5+7 is odd and not a prime; 3+5+11 is a prime; 2+3+5 is even

10(b) If *L* is the low value and *H* the high value of the possible numbers then Mary guesses $\frac{L+H}{2}$ if *L*+*H* is even and $\frac{L+H+1}{2}$ if *L*+*H* is odd. Then Mary's incorrect guesses reduce successively from 100 to 50,25,12,6,3,1 possible numbers.

11(d) These are the numbers which are the squares of multiples of 3 i.e. squares of 3,6,9,12,15,18,21.

12(a) Since $\sin A = \sin B = 4/5$ it follows that a=b=5/2 and the altitude divides *c* into two segments of length 3/2 each.

13(a) The diagonals of *AB* are diameters of the circle, and have length 2. Thus the length of the sides of *ABCD* are $\sqrt{2}$, the area of *ABCD* is 2 and triangle *CDE* has half this area.

14(e) Solve the equations simultaneously to get $(x - 1)^2 + x = r^2$ which is a quadratic equation in x. The discriminant is less than 0 if $r^2 < 3/4$.

15(e) $2 \log_3 (xyz) = \log_3 (x^2 y^2 z^2) = \log_3 27 = 3.$

16(b) The quotient is near 4y/(-2y)

17(c) For x = 1 there are 8 solutions; for x = 2 seven solutions; ..., for x = 8 one solution. Answer is 8+7+6+5+4+3+2+1.

18(b) Form a triangle *OPQ* where *O* is the center of the circle and *P*,*Q* are points on the circle, and *A* is the angle *POQ*. Draw an altitude *PR* from *P* to *OQ*. Then *PR* = sin *A*, QR=1-cos *A*, and $(PQ)^2 = (PR)^2 + (QR)^2$. Thus $x^2 = \sin^2 A + (1 - \cos A) = 2(1 - \cos A)$

19(e) ABC = 36A+6B+C is divisible by 4 only if 6B+4 is divisible by 4 which is not necessarily true in any of (a)-(d).

20(e)
$$P(1+.08/4)^4 = P(1.02)^4 \approx P[1+4(.02)+6(.02)^2]$$
 (Binomial Theorem)

21(d) 6=1+A+B+C and 0=8+4A+2B+C. Division of f(x) by x - 2 gives $x^{2} + (A+2)x + (B+2A+4)$. The sum of the other two roots is -(A + 2). Hence A=-3, B=-4, C=12.

22(c) The simultaneous solutions of the two inequalities is represented graphically by the square with vertices (-2,0),(0,-2), (2,0),(0,2). The maximum *xy* occurs along the line y = 2 - x, $0 \le x \le 2$. The maximum value of $x(2 - x) = 1 - (x - 1)^2$ is 1.

23(c) By the binomial theorem $1000^{1/3} = (1000+1)^{1/3} \approx 10 + (1/3)(1000)^{-2/3} - (2/9)(1000)^{-5/3} = (10+1/300) - 2/900,000$

24(c) If N = 4 then $M^2 - 16 \equiv 1 \mod 10$ implies $M^2 \equiv 7 \mod 10$ which is not possible for any integer *M*.

25(b) From the sequence 1,3,3/2,7/2,7/4,15/4,... it is seen $a_{2n-1} = \frac{2^{n+1}-1}{2^{n-1}}$ and $a_{2n+1} = \frac{2^{n+2}-1}{2^n}$. Thus $a_{99} = (2^{51} - 1)/2^{49}$ and $a_{101} = (2^{52} - 1)/2^{50}$.

26(a) This may be seen by sketching the graphs of y = x+1, $x \ge 2$; y = -x+5, $x \le 2$ and y = x-3, $x \le 5$ and y = 7-x, $x \ge 5$.

27(e) For example if k is a positive integer then k^2 , $(2k)^2$, $(4k)^2$, ... is such a geometric sequence.

28(a) The number must also divide 2(3n + 17) - 3(2n - 8) = 58.

29(a) By substitution y = c is also a root. By long division the function may be factored to $(y - c)(y^2 + cy - 1)$ and the sum of the roots of the quadratic factor is -*c*.

30(d) S $\ge 1/x^2$ if $1/x^3 + 1/x^2 \ge 2/x^3$. Multiply by x and simplify to $(x - 1)^2 \ge 0$.