Answers and Brief Solutions to E1993

1. (e) Each of $10,20,2 \times 5,12 \times 15,22 \times 25$ is a multiple of 10 .
2. (e) The probability they are equal is $1 / 6$; the answer is $1 / 2(1-1 / 6)$.
3. (b) Solving $(a+b) / 2=16,(a+c) / 2=12,(b+2 c) / 2=19$ gives $a=14, b=18, c=10$.
4. (c) If S is the selling price and C the cost then $S-C=10$ and $.9 S-C=8$. Then $.9 S$ is the new price.
5. (a) The contrapositive of the second statement is "If $x \geq 3$ then $y<7$ " which together with $x \geq 3$ implies $y<7$; also $x \geq 3$ is true.
6. (b) Add -3 times equation 1 to equation 2 and -5 times equation 1 to equation 3 . This gives $7 y-5 z=-2 a$ and $7 y-5 z=-5 a+b$. Solve $-2 a=-5 a+b$.
7. (d) Solve $\frac{5(.2)+.1 x}{5+x}=.12$ for x.
8. (e) If r is Bill's rate then the time to run the race for Bill is $1000 / r$ and for John is $600 / .8 r+400 / x r$. Set these equal and solve for x.
9. (c) Let Jack win x games and lose y games. Then $2 y-5-x=0$ or $2 y-5-x=1$. Thus $2 y-x=5$ or $2 y-x=6$ for positive integers x, y. If $x+y=n$ then $n=3 y-5$ or $n=3 y-6$ and n cannot be $5,8,11,14$,etc.
10. (a) Both x and $\log _{10} x$ are positive but x is much larger.
11. (c) If $2 n, 2 n+2,2 n+4$ are consecutive even integers the sum is $6(n+1)$. Thus we count perfect squares which are divisible by 6. Of these only $6^{2}, 12^{2}, 18^{2}$ are less than 500.
12. (d) Solve $(1+r / 2)^{2} A=2 A$ for r, where A is the amount of the investment.
13. (a) If the Yankees or Dodgers win the last game then there are $C(6,3)=20$ ways, where $C(6,3)$ is the number of combinations of three objects from 6 .
14. (d) From $10^{c}=b$ and $b^{d}=c$ obtain $10^{c d}=c$ from which the answer follows.
15. (b) By long division $4 x^{3}+8 x^{2}-11 x-15=(2 x-3)\left(2 x^{2}+7 x+5\right)$.

Thus the roots are $3 / 2,-5 / 2$, and -1 .
16. (a) By the Binomial Theorem $(1+.01)^{10} \approx 1+10(.01)+45(.01)^{2}+120(.01)^{3}$.
17. (c) If n is an even number then $a_{n}=\frac{1+1 / 3^{n / 2}}{2}$. Thus if n is a large even number then a_{n} is near $1 / 2$ and a_{n+1} is near $3 / 2$.
18. (e) If C is the intersection point of side $A B$ and the altitude then $A C$ has length x and $C B$ has length $\sqrt{3} x$. Thus $1=x \frac{x+\sqrt{3} x}{2}$.
19. (a) By the Pythagorean Theorem $E D=\sqrt{3}$ and by similar triangles $B C=3 \sqrt{3}$ The area is $[3 \times 3 \sqrt{3}] / 2$.
20. (c) Solve simultaneously $y=x-3$ and also $y=x+3$ with $x^{2}+y^{2}=29$ to get x, y values -2,5 and 2,-5.
21. (b) For integers K, L we have $M+2 N=6 K+4$ and $2 \mathrm{M}+N=3 L+x$. Add equations to get $3 M+3 N=3(2 K+L+1)+(1+x)$. Thus 3 divides $(1+x)$ and a solution is then $M=2, N=7$.
22. (d) The population at time t years after 1992 is $P=x 2^{t / 12}$ Set $t=4$ to get the result.
23. (a) The ratio of the circumference to the diameter is π.
24.(c) Substitute to get $y+(y-1)^{2}=C$ or $y^{2}-y+(1-C)=0$. Solve by the quadratic formula; the discriminant is $-3+4 C$ and there is just one solution if this is 0 .
25.(b) Answer (a) <100 and answer (c) $<10^{18}$. Answer (b) $>$ answer (d) since
$4^{100}=4^{8} \times 4^{20}=16^{40} \times 4^{20}>10^{20} \times 3^{20}$ and $>$ answer (e) since
$4^{100}>4^{30} \times 4^{30} \times 4^{30}=64^{10} \times 64^{10} \times 64^{10}>10!\frac{20!}{10!} \frac{30!}{20!}$
26. (b) $S_{n}=2^{n+1}-1$. Note $2^{10}=1024$ and $2^{6}=64$.
27. (a) Since $12<x^{2} y z<20$ then $12 / y z<x^{2}<20 / y z$ and $2<x^{2}<4$.

The values $\mathrm{x}=1.5, y=2.1, z=2.8$ show other cases are not necessarily true.
28. (b) The largest prime divisor is 17.
29. (e) The units digit of 7^{n} for $n=1,2,3,4,5$ respectively is $7,9,3,1,7$. Thus it is periodic of period 4 and since 50/4 has remainder 2 the remainder for $n=50$ is the same as for $n=$
2.
30. (e) In the Figure $x=C F, y=F G$; $1 / 6=$ area $B E C=(2 x) / 2 ; x=1 / 6 ; 1=$ area $A B C D=2(x+y) ; \quad y=1 / 3$; Let $a=E C$. By similar triangles $\frac{a}{x}=\frac{a+1}{x+y}$ gives a $=1 / 2$.

