Answers and Brief Solutions to E1993

1. (e) Each of 10,20,2x5,12x15,22x25 is a multiple of 10.

2. (e) The probability they are equal is 1/6; the answer is 1/2(1 - 1/6).

3. (b) Solving (a+b)/2 = 16, (a+c)/2 = 12, (b+2c)/2 = 19 gives a = 14, b = 18, c = 10.

4. (c) If S is the selling price and C the cost then S - C = 10 and .9S - C = 8. Then .9S is the new price.

5. (a) The contrapositive of the second statement is "If $x \ge 3$ then y < 7" which together with $x \ge 3$ implies y < 7; also $x \ge 3$ is true.

6. (b) Add -3 times equation 1 to equation 2 and -5 times equation 1 to equation 3. This gives 7y - 5z = -2a and 7y - 5z = -5a + b. Solve -2a = -5a + b.

7. (d) Solve
$$\frac{5(.2) + .1x}{5 + x} = .12$$
 for x.

8. (e) If *r* is Bill's rate then the time to run the race for Bill is 1000/r and for John is 600/.8r + 400/xr. Set these equal and solve for *x*.

9. (c) Let Jack win x games and lose y games. Then 2y-5-x=0 or 2y-5-x=1. Thus 2y-x=5 or 2y-x=6 for positive integers x,y. If x + y = n then n = 3y - 5 or n = 3y - 6 and n cannot be 5,8,11,14,etc.

10. (a) Both x and $\log_{10} x$ are positive but x is much larger.

11. (c) If 2n, 2n + 2, 2n + 4 are consecutive even integers the sum is 6(n + 1). Thus we count perfect squares which are divisible by 6. Of these only 6^2 , 12^2 , 18^2 are less than 500.

12. (d) Solve $(1 + r/2)^2 A = 2A$ for r, where A is the amount of the investment.

13. (a) If the Yankees or Dodgers win the last game then there are C(6,3) = 20 ways, where C(6,3) is the number of combinations of three objects from 6.

14. (d) From $10^c = b$ and $b^d = c$ obtain $10^{cd} = c$ from which the answer follows.

15. (b) By long division $4x^3 + 8x^2 - 11x - 15 = (2x - 3)(2x^2 + 7x + 5)$. Thus the roots are 3/2, -5/2, and -1. **16. (a)** By the Binomial Theorem $(1 + .01)^{10} \approx 1 + 10(.01) + 45(.01)^{2} + 120(.01)^{3}$.

17. (c) If *n* is an even number then $a_n = \frac{1+1/3^{n/2}}{2}$. Thus if *n* is a large even number then a_n is near 1/2 and a_{n+1} is near 3/2.

18. (e) If *C* is the intersection point of side *AB* and the altitude then *AC* has length *x* and *CB* has length $\sqrt{3}x$. Thus $1 = x \frac{x + \sqrt{3}x}{2}$.

19. (a) By the Pythagorean Theorem $ED = \sqrt{3}$ and by similar triangles $BC = 3\sqrt{3}$ The area is $[3 \times 3\sqrt{3}]/2$.

20. (c) Solve simultaneously y = x - 3 and also y = x + 3 with $x^2 + y^2 = 29$ to get x, y values -2,5 and 2,-5.

21. (b) For integers K,L we have M + 2N = 6K + 4 and 2M + N = 3L + x. Add equations to get 3M + 3N = 3(2K + L + 1) + (1 + x). Thus 3 divides (1 + x) and a solution is then M = 2, N = 7.

22. (d) The population at time t years after 1992 is $P = x2^{t/12}$ Set t = 4 to get the result.

23. (a) The ratio of the circumference to the diameter is π .

24.(c) Substitute to get $y + (y - 1)^2 = C$ or $y^2 - y + (1 - C) = 0$. Solve by the quadratic formula; the discriminant is -3 + 4C and there is just one solution if this is 0.

25.(b) Answer (a) < 100 and answer (c) < 10^{18} . Answer (b) > answer (d) since $4^{100} = 4^8 x 4^{20} = 16^{40} x 4^{20} > 10^{20} x 3^{20}$ and > answer (e) since $4^{100} > 4^{30} x 4^{30} x 4^{30} = 64^{10} x 64^{10} x 64^{10} > 10! \frac{20!}{10!} \frac{30!}{20!}$

26. (b)
$$S_n = 2^{n+1} - 1$$
. Note $2^{10} = 1024$ and $2^6 = 64$.

27. (a) Since $12 < x^2 yz < 20$ then $12/yz < x^2 < 20/yz$ and $2 < x^2 < 4$. The values x = 1.5, y = 2.1, z = 2.8 show other cases are not necessarily true.

28. (b) The largest prime divisor is 17.

29. (e) The units digit of 7^n for n = 1,2,3,4,5 respectively is 7,9,3,1,7. Thus it is periodic of period 4 and since 50/4 has remainder 2 the remainder for n = 50 is the same as for n = 50

30. (e) In the Figure x = CF, y = FG; 1/6 = area BEC = (2x)/2; x = 1/6; 1 = areaABCD = 2(x + y); y = 1/3; Let a = EC. By similar triangles $\frac{a}{x} = \frac{a+1}{x+y}$ gives a = 1/2.