Answers and Brief Solutions to E1996

1. (d) $.2 \times 3+.4 \times 2+.3 \times 1=1.7$
2. (e) 20-8 = 12 students take English; 12-4 = 8 students take both English and Math; 14-8 = 6 students take Math but not English.
3. (b) If x is the original length of a side then the change in volume is
$(1.1 x)^{3}-x^{3}=.331 x^{3}$.
4. (d) Long division gives $8-\frac{64}{8+x}$ which for $x>0$ is an integer only if $x=8,24,56$.
5. (e) Equate $4 / 3 \pi r^{3}=4 \pi r^{2}$ and solve for r.
6. (b) This makes the sum of the first 3 equations equal the fourth.
7. (a) Solve $2=(1+r)^{n}$ for n by taking the log of both sides.
8. (d) Let r be Bill's rate. Equating the times of John and Bill gives $\frac{D}{9 r / 10}+\frac{1-D}{11 r / 10}=\frac{1}{r}$. Solve for D.
9. (d) There are $C(10,3)=120$ ways to choose 3 numbers from ten and $C(5,3)=10$ ways to chose 3 odd numbers from these ten. Answer is $1-10 / 120$.
10. (a) Let the terms be $a, a+d, a+2 d, \ldots$. Then $a=3$ and $10 a+45=120$. Thus $d=2$ and the terms are $3,5,7,9, \ldots$.
11. (e) Let the altitude from C intersect $A B$ in point P. If x is the length of $A P$ and y the length of $B P$ then $2 / 3=6 / x$ and $3 / 4=6 / y$. Thus the length of $A B$ is $x+y=9+8=$ 17 and the area is $(1 / 2) \times 6 \times 17=51$.
12. (c) Solve $10(.1)+20(.2)+x(.3)=(30+x)(.25)$ for x.
13. (a) Let (a, b) be the point of intersection. Then $\frac{b-2}{a-1}=-\frac{a}{b}$ gives $a^{2}+b^{2}=$ $a+2 b=1$. Solving gives $b=4 / 5$ and $a=-3 / 5$ as a solution.
14. (b) Solve simultaneously $b=5 a$ and $\frac{b-3}{a-2}=-1 / 5$.
15. (c) Long division of $x^{3}+a x+b x+c$ by $x-1$ gives a remainder of $a+b+c+1$.
16. (d) Multiply the numerator and denominator by $\sqrt{1+x}+1$ and simplify; then substitute $x=0$.
17. (c) Use the binomial approximation $\left(x^{2}+1\right)=\left(x^{2}\right)^{1 / 2}+$

$$
(1 / 2)\left(x^{2}\right)^{-1 / 2}+(1 / 2)(1 / 2)(-1 / 2)\left(x^{2}\right)^{-3 / 2}+\ldots \text { and simplify. }
$$

18. (d) The second person has probability $6 / 7$ of a different birth weekday than the first person, and the third person a probability of $5 / 7$ different from the first two. Form the product (6/7)x(5/7).
19. (c) Multiply both sides of the equation by $x^{2}(x+1)$ and equate the constant terms and coefficients of x, x^{2} on the two sides of the equation. Then $A+C=1, A+B=9, B=7$. Solving gives $A=2, B=7, C=-1$.
20. (b) Consider a triangle with vertices O, the center of the circles, P the point of tangency, and Q a point of intersection of the tangent with the larger circle. The lengths of the sides are 1 for $O P, 2$ for $O Q$ and hence $\sqrt{3}$ for $P Q$.
21. (b) From $360=2^{3} \mathrm{x} 3^{2} \mathrm{x} 5$ and $756=2^{2} \mathrm{x} 3^{3} \mathrm{x} 7$ the least common denominator is $2^{3} \mathrm{x} 3^{3} \mathrm{x} 5 \mathrm{x} 7=7560$. The numerator is then $3 \mathrm{x} 7 \mathrm{x} 7+2 \mathrm{x} 5 \mathrm{x} 5=197$.
22. (e) Take \log of both sides of the equation. This gives $y^{2}=2+y$ where $y=\log _{a} x$. Solving gives $y=-1,2$ and hence $x=1 / a$ and a^{2}.
23. (c) $x(1)=1+.1, x(2)=1+.1+.1^{2}, \ldots$. Thus $x(n)$ is a geometric progression with initial term 1 and ratio .1 ; the limit value is $\frac{1}{1-.1}=10 / 9$.
24. (a) Note $3^{20}=\left(3^{4}\right)^{25}$. The remainder of 3^{4} divided by 11 is 4 and the remainder of 4^{5} by 11 is 1 .
25. (e) A is false if y is odd and B is false is z is even ; C is true since $y z$ must be even and the sum of an even and odd number is odd.
26. (e) Note $1000=2^{3} \mathrm{x} 5^{3}$. The 8 divisors of 1000 less than $\sqrt{1000}(<34)$ are 1,2,4,8,5,25,10,20.
27. (d) Let p be the probability the person with $\$ 2$ will win the $\$ 3$; then $1-p$ is the probability the person with $\$ 1$ will win the $\$ 3$. Therefore $p=1 / 3+2 / 3(1-p)$; solving gives $p=3 / 5$.
28. (b) If $0<x<1$ and $a<b$ then $x^{b}<x^{a}$. Therefore $x=x^{1}<x^{x}=y<1$ and $z=x^{y}<x^{x}=$ y. Also $x=x^{1}<x^{y}=z$.
29. (c) $1+i=\sqrt{2}(\cos \pi / 4+i \sin \pi / 4)$ and by DeMoivre's Theorem $(1+i)^{10}=\sqrt{2}^{10}(\cos 10 \pi / 4+i \sin 10 \pi / 4)=32 i$.
30. (a) If c is the third side then the altitude to c has length $10 \sin 30^{\circ}=5$; there are two triangles if x is greater than this value and less than the length of b.
