Answers and Brief Solutions to E1998

1. (a) If x is the score on the final then $(90+80+90+60+2 x) / 6=85$.
2. (a) The final price is $(1.1) *(.9)=.99$ the original price.
3. (b) The probability the second differs from the first is $5 / 6$, and in this case that the third differs from the first two is $2 / 3$. Answer is $5 / 6 \times 2 / 3$.

4 (e) From $2 x+5=3 x-2$ and $2 x+5=-(3 x-2)$ the two solutions are 7 and $-3 / 5$.
5. (c) $=5 \times 5=25$ since each number is a product of a power of 2 and a power of 3 , each power between 0 and 4 inclusive.

5 (d) This is the contrapositive of the given expression.
7. (a) If n denotes the number of elements in a set then $n(A \cap B)=n(A \cup B)-n\left(A^{\prime} \cap B\right)-$ $n\left(A \cap B^{\prime}\right)$; this can be easily seen from a Venn diagram.

8 (c) If x is the length of the side then the volume is x^{3} and the total surface area is $6 x^{2}$.
9. (e) $x(n)=a / 2^{n}-\left(1+1 / 2+1 / 4+\ldots+1 / 2^{n-1}\right)=a / 2^{n}-2+(1 / 2)^{n-1}$. Thus $0=a / 64-2+$ $1 / 32$ gives $a=126$
10. (d) Let D be the endpoint of the altitude. Then $A D=\sqrt{3} h$ and $D B=h / \sqrt{3}$. Then $A B=A D+D B=4 h / \sqrt{3}$ and $10=1 / 2 h(A B)$ gives the result.
11. (e) The value is $(1.1)^{100}$. Since $1.1^{2}=1.21$ and $1.1^{4=} 1.21^{2}>1.46>\sqrt{2}$ then $1.1^{8}>2$ and from $1.1^{100}=1.1^{96} \times 1.1^{4}$ then $1.1^{100}>2^{12} \sqrt{2}>4,000 \sqrt{2}$; the actual value is near 13,780 .
12. (b) Equating the distances from (a, b) to the three points and solving for a and b gives $a=1 / 4$ and $b=5 / 4$.
13. (d) Let j and b be the speeds of John and Bill. Then $j+7=2 b$ and $b=4 / 5 j$. Thus $j+$ $7=8 / 5 j$.
14. (b) Simplify $.03 x+.06 y+10(.05)=.04(x+y+10)$
15. (a) Divide $x^{3}-7 x+6$ by $(x-1)(x-2)$ to obtain $x+3$.
16. $(d)=\frac{2-x}{2 x(2-x)}=\frac{1}{2 x}$ if $x \neq 2$.
17. (e) $=6 / 7-5 / 6(=s(6)-s(5)$ where $s(n)=a(1)+a(2)+\ldots+a(n))$.
18. (d) The angle subtended by the arc is $\pi / 3$ radians, which is $1 / 6$ of a complete revolution. The area of the cone shaped region is then $1 / 6$ the area of the circle.
19. (a) Let x be the length of the bridge and y the distance from the train to the far end of the bridge. Then $.6 x / r=y / 50$ and $.4 x / r=(y-x) / 50$. Solve for r.
20. (c) The intersection of the inequalities geometrically describes a triangle with vertices (-2,0), (1/2,5/2) and (6/7,10/7).
21. (b) The values $y_{1}, y_{2}, \ldots, y_{10}$ are respectively the base x raised to the exponent $2,2^{2}, 2^{3}$, $\ldots, 2^{10}$ and $2^{10}=1,024$.
22. (e) It is $C(12,3) \times 2^{3}=(12 \times 11 \times 10) /(3 \times 2 \times 1) \times 8$ where $C(12,3)$ is the binomial coefficient.
23. (a) Let $x=5+6 m$ and $y=2+3 n$ where m, n are integers. Then $x y-10=15 n+12 m$ $+18 m n$ and of the numbers $2,3,6$ only 3 divides each of $15,12,18$.
24. (b) The ones with 1 the smallest integer are (1,2,17),(1,3,16),... $(1,9,10)$ giving 8 ; similarly with 2 obtain $(2,3,15), \ldots,(2,8,10)$ giving 6 . Continuing the answer is $8+6+5+3+2=24$.
25. (c) Let r be the ratio of each term to the preceding. Then $r^{2}+r=10 / 9$ gives $r=2 / 3$. Thus the difference is $2 / 3-4 / 9$.
26. (c) $\sin B=3 / 5$ and by the law of sines, $\frac{10}{\sin 120}=\frac{b}{3 / 5}$.
27. (e) Substitute $y=1-x$ into $y+z=-1$ and solve simultaneously with $x+z=4$ to get $z_{0}=1$ and $x_{0}=3$. From $w+x+y=6$ the sum is $6+z_{0}=7$. .
28. (b) $1997 / 97=20$ with remainder 57 and $57 / 19=3$; thus $m=3, n=20$ is a solution. It is the only one since if $1997=19(3+a)+97(20+b)$ then $19 a+97 b$ $=0$ and this is only possible if a is a negative multiple of 97 or b a negative multiple of 19 and these do not give other valid answers.
29. (d) The numerator is defined for $x \leq 1$, and the denominator for $x \geq 0$; if $x=1$ the denominator is 0 and the fraction is not defined.
30. (c) There are $C(10,3)=(10 \times 9 \times 8) /(3 \times 2 \times 1)=120$ combinations of 3 balls from 10 and 8 of these have two black balls; answer is $8 / 120=1 / 15$.

