Answers and Brief Solutions to E1999

1(c) The sequence is $2,3,5,8,13,21,34,55,89,144$
$2(d)=1+3+5+\ldots+37=(1+2+\ldots+37)-2(1+2+\ldots+18)=37 \times 38 / 2-2 x 18 \times 19 / 2=19 x(37-$ $18)=19^{2}$ or the points form a right triangle with sides of length 19 and 38 giving an area 1/2x19x38.

3(b) If $a b$ were rational then $a b=m / n$ where m, n are integers and $b=m / a n$ would then be rational.

4(e) $(x-y)(x+y)=x^{2}-y^{2}=x-y$ gives $x+y=1$.
5(c) If D is the distance between the towns and t the time until they meet then $D=D t / 9+$ $D t / 6$; solve for t.

6(a) $z / x=x / y$ gives $2 / 1=1 / y$ and hence $y=1 / 2$. Thus if $z=4$ then $x^{2}=4(1 / 2)=2$.
7(c) The sum of the remaining 8 scores is $10 x 76-46-52=662$ and $662 / 8$ is nearest 83 .
8(c) If r is John's rate and t is the time sought then $r(t+5)=(4 r / 3) t$; solve for t.
9(b) If $x \leq-1$ the expression is $2-x-x^{2}$ which has maximum value 2 at $x=-1$; if $-1 \leq x \leq$ 1 then the expression is $(x-1 / 2)^{2}-1 / 4$ which also has maximum at $x=-1$, and if $x \geq 1$ then the expression is $1 / 4-(x-1 / 2)^{2}$ which has maximum 0 at $x=1$.
$10(\mathrm{c})=(20)(21) / 2-(21)(7)=63$
11(b) If (a, b) is the center then $a^{2}+b^{2}=a^{2}+(b-2)^{2}=(a-1)^{2}+(b-3)^{2}$
Solving the first two gives $b=1$; substituting this value in the first and third and solving for a gives $a=2$.

12(a) From $(x-a)(x-b)(x-c)=x^{3}+x^{2}(-a-b-c)+x(a b+a c+b c)+(-a b c)$ the sum of the roots is -(coefficent of x^{2})and the product is -(constant term).

13(e) If taxed the person retains $(100-20) \%=80 \%$ of the interest and 80% of 8% is 6.4\%.
$14(\mathrm{e}) 8^{p}=3$ gives $2^{3 p}=3$ and hence $(3 p) \log _{3} 2=\log _{3} 3=1$.
15(b) $3^{x}=7^{y}$ and $7^{y}=10$ gives $3^{x y}=\left(3^{x}\right)^{y}=7^{y}=10$
16(c) $=f(4-5)=f(-1)=-3+1$

17(d) In the interval [0,1] those numbers which are at least twice as far from one end of $[0,1]$ as the other are the numbers in the intervals $[0,1 / 3]$ or $[2 / 3,1]$.

18(c) $f(g(x))=3(a x+b)+2=15 x+8$; thus $3 a=15$ and $3 b=6$.
19(a) It is $C(9,6)\left(2^{6}\right)=84 \times 64$ where $C(9,6)$ is the binomial coefficient
20(b) By deMoivre's theorem it is $(\sqrt{2})^{10}(\cos (-10 \pi / 4)+i \sin (-10 \pi / 4))$
21. (c) The equation $.1 x+.3 y=.15(x+y)$ gives $.15 y=.05 x$.

22(d) Let $y=3 x+b$ be the equation of the line; then $6=(3)(3)+b$ gives $b=-3$.
Find the simultaneous solution of $y=3 x-3$ and $y=3 / 2 x^{2}$
23(b) Since -1 is a root of $x^{15}+1$ it follows that $x-(-1)=x+1$ is a divisor.
24 (c) Solving $\frac{2 x+4}{x}=\frac{5 x+10}{2 x+4}=5 / 2$ gives $\mathrm{x}=8$ and ratio $5 / 2$. Thus the sequence is 8,20,50,125

25(e) If x is the length of the sides of S then by similar triangles $(3-x) / x=3 / 4$.
26(d) The prime factorization of 630 is $2 \times 3 \times 3 \times 5 \times 7$; thus if $630 N$ is a perfect square it must include the square of each prime factor. Thus $2 \times 5 \times 7=70$ gives the smallest possible value for N.

27(a) Subtract equation (2) from equation (1) to obtain $2 x=4$, or $x=2$. Add equations (1) and (3) to get $2 u+2 x=6$ or $u=1$. Equations (1),(4) are now $y+z=2$ and $-y+z=4$. Adding gives $2 z=6$ or $z=3$ and $y=-1$. Answer is $1-2-1-3=-5$.

28(e) $x=8+2 t, y=1-3 t$ is a solution for any integer t.
29(e) Letting $C(n, r)$ denote the number of combinations of r objects from n then the answer is $\frac{C(3,2) C(7,1)}{C(10,3)}$.

30(d) $(x+1)^{2}-y^{2}=1-a$. If $a=1$ then the graph consists of two straight lines.

