## Answers and Brief Solutions to E2000

1. (e) From $(60 \times 11+70 \times 19) / 30=661 / 3$
2. (c) is not betwen $-\pi / 2$ and $\pi / 2$
3. (d) It travels 5 times around a circle with perimeter $2 \pi \times 3=6 \pi$
4. (c) From $60 \%$ of $30=18$ and $50 \%$ of $90=45$ they must win $45-18=27$ of 60 games and $27 / 60=.45$.
5. (e) The equation $x+2 x=1$ has solution $x=1 / 3$; the equation $-x+2 x=1$ has solution $x$ $=1$ but 1 does not satisfy the given equation.
6. (c) If $P$ and $Q$ are statements then the negation of $(P$ or $Q$ ) is equivalent to (not $P$ and not $Q$ )
7. (d) $\frac{x^{3}-1}{x-1}=x^{2}+x+1$ if $x \neq 1$ and $1^{2}+1+1=3$
8. (b) $5,12,13$ are the values.
9. (a) Dividing $2 x^{3}-x^{2}-x-3$ by $x^{2}+x+1$ gives $2 x-3$ which has root $x=3 / 2$.
10.(b) The identity is 0 since $a^{*} 0=0 * a=a$. From $3^{*}(-3)=(-3) * 3=0$ the result follows.
11.(e) If $s$ is the amount of salt and $w$ is the final weight then $s=.01 x=.02 w$ so $w=.5 x$
12.(a) Let $A, B, C, D$ be assigned $1, b, c, d$. Then $1=\frac{b+d}{2}=c$ and $b=\frac{a+c}{2}=d$ gives $a=$ $b=c=d=1$.
13.(e) Note $x_{n+1}=2 x_{n}-x_{n-1}$. The sequence for terms $0,1,2,3$, is $1,4,7,10, \ldots$. with general term $x_{n}=3 n+1$; thus $x_{100}=3(100)+1$.
10. (b) The probability the box with three balls has different colors is $(1 \times 2 \times 3) / C(6,3)=$ $3 / 10$. Assuming this the probability the box with two balls has different colors is $(1 x 2) / C(3,2)=2 / 3$. The answer is $(3 / 10) x(2 / 3)=1 / 5$.
15.(c) If $r_{t}$ is the speed of Tom and $r_{b}$ is the speed of Bill then $100 / 90=r_{t} / r_{b}=$ $(100+x) / 100$. Solve for $x$.
16.(d) Letting $C(m, n)$ denote the binomial coefficient then in the expansion one may select the $a$ 's from $C(8,3)$ terms, then the $b$ 's from $C(5,2)$ terms and then the $c$ 's from $C(3,3)$ terms. The answer is $C(8,3) C(5,2) C(3,3) 2^{2}=56 \times 10 \times 1 \times 4$.
17.(b) By the quadratic formula the roots are $3+2 \sqrt{2}$ and $3-2 \sqrt{2}$
18.(c) Write the circle in the form $(x-3)^{2}+(y-2)^{2}=1$. Then consider the triangle with vertices $P,(3,2)$ and $Q$ with right angle at $Q$. By the Pythagorean Theorem $d^{2}=\left[(3-1)^{2}+\right.$ $\left.(2-1)^{2}\right]-1^{2}=4$.
11. $(\mathrm{d}) \mathrm{z}=2\left(\cos \left(300^{\circ}\right)+\sin \left(300^{\circ}\right) i\right)$ and by Demoivres Theorem $\sqrt{z}=\sqrt{2}\left(\cos \left(150^{\circ}\right)+\right.$ $\left.\sin \left(150^{\circ}\right) i\right)=-\sqrt{6} / 2+\sqrt{2} / 2 i$.
20.(e) If $x>1$ the inequality becomes $x+1>x-1$ which is true for all $x$; if $x<1$ then the inequality becomes $x+1>1-x$ which is true for $x>0$.

21 (b) $2 \log \mathrm{x}=\log x^{2}$ and $x^{2}=2 x$ gives $\mathrm{x}=0$ and $x=1$. However $\log 0$ is not defined so $x=1$ is the only solution.
22.(a) If $O$ is the center of the circle then $O P$ has length $r-1$ and is a leg of a right triangle with the other leg of length $4 / 2=2$ and hypotenuse of length $r$. Thus $r^{2}=2^{2}+(1-r)^{2}$; solve for $r$.
23.(b) During the four years $P$ is multiplied by $(1.2)^{2}(.9)^{2}=1.166$..
24. (a) From the equations $c-b=b-8$ and $c / b=b / 9$ it follows that $c=2 b-8$ and $b^{2}=$ $9 c$.
Combining gives $\mathrm{b}^{2}-18 b-72=(b-12)(b-6)=0$. Then $b=12$ since the sequence is increasing.
25.(d) $x^{2}-x z+y z-y^{2}=x^{2}-y^{2}-x z+y z=(x+y)(x-y)-z(x-y)=(x+y-z)(x-y)$

26 (e) $x-y=2 m$ and $y-z=3 n$ for some integers $m, n$ give $x-z=2 m+3 n$ which is not necessarily a multiple of 3,6 , or 8 . For example if $x=8, y=6, z=3$ then none of $I$, II, III are true.
27.(c) $10^{20} / 15^{15}=\left(10^{4} / 15^{3}\right)^{5}=\left[(2 / 3)^{3}(10)\right]^{5}>1$ and $15^{15} / 20^{10}=\left(15^{3} / 20^{2}\right)^{5}=$ $\left[(3 / 4)^{2}(15)\right]^{5}>1$.
28.(e) 1-9 gives 9; 10-99 gives $90 \times 2=180 ; 100-999$ gives $900 \times 3=2700 ; 1000$ gives 4

29 (d) By algebra obtain the quadratic equation $y^{2}-x y-x^{2}=0$. Solve for $y$ using the quadratic formula and choose the positive value.
30.(a) Let $40-\sqrt{x}$ assume the values $1,4,9,16,25,36$ and get $x=39^{2}, 36^{2}, 31^{2}, 24^{2}, 15^{2}$, $4^{2}$.

