Answers and Brief Solutions to E2001

1. $($ a $)=2 *(2 *(1 / 2))=2 *(4 / 5)=10 / 14$
2. (d) If D is the diameter of the circle then D is the length of the sides of the larger square and is the length of a diagonal of the smaller square. Thus the sides of the smaller square have length $D / \sqrt{2}$ and $A / a=\left(\pi D^{2} / 4\right) /\left(\pi D^{2} / 8\right)$
3. (d) From $x^{2}-3 x+2=(x-1)(x-2)<0$ it follows that $1<x<2$
4. (d) Substitution of the given points into the parabola equation gives $1=a+b$ and $7=$ $4 a+b$ from which $a=2$ and $b=-1$. Thus the equation is $y+1=2 x^{2}$
5. (a) If x is the number removed then $x=90 N-100(N-1)>0$ gives $100>10 N$.
6. (e) Method 1; After a first sock is selected there are 7 socks remaining and 3 are of the same color as the first. Method 2: Letting $C(n, r)$ denote the number of combinations of r objects from n there are $C(8,2)=28$ possible choices of a sock pair and $2 C(4,2)=12$ choices of a pair having the same color; thus the answer is 12/28.
7. (a) After the second transfer A has $4-16 / x+4(x-4) / x$ and B has $(x-4)-4(x-4) / x$ $+16 / x$ gallons of juice; equating these and simplifying gives $(x-8)^{2}=0$.
8. (b) If the numbers are a, $a r$ and $a r^{2}$ then $a\left(1+r+r^{2}\right)=52$ and $a\left(r^{2}-1\right)=32$. Then eliminating a gives $52\left(r^{2}-1\right)=32\left(1+r+r^{2}\right)$ which has $r=3$ as the positive root. Substituting gives $a=4$ and thus ar $=12$.
9. (e) Let y be the unknown ; then $(1+x / 100)(1-y / 100)=1$; solve for y in terms of x.
10. (c) The lines $y-x \leq 1$ and $y-x \geq-1$ intersect the lines $y+x \leq 1$ and $y+x \geq-1$ in the four points $(1,0),(0,1),(-1,0),(0,-1)$ which form the vertices of a square whose sides have length $\sqrt{2}$.
11. (c) Solving for y and completing the square gives $y=(x-4)^{2}+3$
12. (d) From $108=2^{2} x 3^{3}, 450=2 x 3^{2} x 5^{2}$, and $405=3^{4} x 5$ the least common multiple is $2^{2} \times 3^{4} \times 5^{2} \times 100=810,000$.
13. (e) The area of the parallelogram is the product of the base and the height. Either the base is 10 and the height $5 \sin 60^{\circ}=5 \sqrt{3} / 2$ or the base is 5 and the height $10 \sin 60^{\circ}=$ $5 \sqrt{3}$.
14. (a) This is the probability that there is either 0 or 1 head among the first 4 tosses. The probability of 0 heads is $(1 / 2)^{4}$ and of 1 head is $4(1 / 2)^{4}$; add these values.

15 (a) Let x be the larger integer. Then $x^{2}-(x-1)^{2}=1999$ gives $2 x=2000$, or $x=1000$.
16. (b) Let r_{1} and r_{2} be the rates of cars 1 and 2 respectively and t the unknown time. If d is the distance between A and B then $d=\left(r_{1}+r_{2}\right) t=4 r_{1}=6 r_{2}$ gives $r_{1}=3 / 2 r_{2}$ from which $5 / 2 r_{2} t=6 r_{2}$ and hence $t=6 /(5 / 2)$.
17. (c) $x=(97-3 y) / 2$. If y is odd then $97-3 y$ is even and x is then an integer; if y is even then x is not an integer. There are 16 odd integers between 1 and 31 .
18. (b) $2000=3(8)^{3}+7(8)^{2}+2(8)^{1}+0(8)^{0}$; thus $3+7+2+0=12$
19. (d) $2 \log _{10} 100,000=2 \log _{10}\left(10^{5}\right)=\log _{10}(10)^{10}=10$ and $\log _{10} 10=1$
20. (e) If P is the initial amount and r is the annual rate of interest then the value after 10 years is $2 P=P(1+r)^{10}$ from which $(1+r)=2^{1 / 10 \text {. After } 6 \text { years the value is } P(1+r)^{6}=}$ $P\left(2^{1 / 10}\right)^{6}=P\left(2^{3 / 5}\right)$.
21. (b) Using $(a+b)^{1 / 2} \approx a^{1 / 2}+1 / 2 a^{-1 / 2} b, 4.004^{1 / 2} \approx 2+1 / 2(1 / 2)(.004)=2.001$
22. (c) Let T be the total number of children, and C, P, S the number of coke, pepsi and sprite drinkers. Then $6=T-C-P-S=T-1 / 2 T-1 / 3 T-1 / 3(1 / 2 T-1 / 3 T)$. Solve for T.
23. (e) $x=9, y=5, z=2$ makes all of I,II III false.
24. (c) The number of 0 's at the end of 100 ! is the largest value of N such that 10^{N} divides 100 ! Since the prime factors of 10 are 2 and 5 then N is the lesser of the number of times (i) 2 (ii) 5 occurs as a factor of the product 100 !. The number 5 occurs exactly once as a factor of the 20 multiples $5,10,15, \ldots, 100$ of 5 excepting the 4 cases $25,50,75,100$ where it occurs twice giving a total of 24 times. The number 2 occurs as a factor at least once in each of the 50 even numbers between 2 and 100 ..
25. (e) Method I: $x^{3}=x^{2}-x=-1$ by algebra. Method II: By the quadratic formula $x=1 / 2$ $+/-\sqrt{3} / 2 i=\cos 60^{\circ}+/-\sin 60^{\circ} i$. Then by DeMoivre's Theorem $x^{3}=\cos 180^{\circ}+/-$ $\sin 180^{\circ} i$.
26. (d) By combining fractions $y=\frac{1}{x+1}$ and from $9 / 10<x<11 / 10$ it follows that $19 / 10<x+1<21 / 10$; taking reciprocals reverses the order of the inequalities.
27. (d) Method I: If r, s are the other two roots then $r+s+2=-(-4)$ and $2 r s=30$. Solving gives $-3,5$ as values of r,s. Method II: $P(2)=22+2 A=0$ gives $A=-11$. Division of $x^{3}-4 x^{2}+-11 x+30$ by $x-2$ gives $x^{2}-2 x-15=(x-5)(x+3)$ which has roots $-3,5$.
28. (c) Note $x_{n+1}=x_{n}-x_{n-1}$. The sequence is $2,1,-1,-2,-1,1,2,1, \ldots$. Thus the sequence repeats every 6 terms and from $100 \bmod 6=4$ the answer is the fourth term in the sequence which is -2 .
29. (e) The number of N divisible by 6 is the integer value of $1000 / 6$ and the number divisible by 8 is the integer value of $1000 / 8$. These overlap by the integer value of $1000 / 24$, since 24 is the least common multiple of 6 and 8 . Thus the answer is $166+125$ $-41=250$.
30. (a) The amounts lost after succesive bets are $\mathrm{A} / 2,2 \mathrm{~A} / 3,3 \mathrm{~A} / 4, \ldots$ giving the pattern $n A /(n+1)$ and hence after 10 bets $10 \mathrm{~A} / 11$ has been lost leaving $\mathrm{A} / 11$. This is verified from $n /(n+1)=1 / n-1 /(n+1)$ and hence the total sum amount lost is $[(1-1 / 2)+(1 / 2-$ $1 / 3)+(1 / 3-1 / 4)+\ldots+(1 / 10-1 / 11)] \mathrm{A}=[1-1 / 11] \mathrm{A}$.

