Answers and Brief Solutions to E2002

1. (d) $x^{2}=(10 / 100) x$ and $y^{3}=(9 / 100) y$ gives $x=0.1$ and $y=0.3$
2. (c) The total number of points scored was $6 \mathrm{x} 5+8 \mathrm{x} 10+12 \mathrm{x} 15=290$ so the average is $290 / 30=29 / 3$
3. (a) The third angle is 30°. Construct an altitude to a side of length 10 ; the length of the altitude is $10 \sin 30^{\circ}=5$. Since the corresponding base has length 10 , the area is $(1 / 2)(10)(5)=25$.
4. (b) The number of boys who play both baseball and football equals $1 / 3 \mathrm{~F}$ and also $2 / 5 B$; thus $1 / 3 F=2 / 5 B$.
5. (e) The fourth term is the sum of the first four terms minus the sum of the first 3 terms; this is $\left[2(4)^{2}+4\right]-\left[2(3)^{2}+3\right]=36-21=15$
6. (a) This is the probability that exactly one of the first 4 tosses is a head and the fifth is a tail; this gives $4(1 / 2)^{4}(1 / 2)=1 / 8$.
7. (e) $y^{2}=4 x^{2}-4 a x+a^{2}=x^{2}-a$ gives the quadratic equation $3 x^{2}-4 a x+\left(a^{2}+a\right)=0$ and the discriminant is $4 a^{2}-12 a$ which equals 0 if $a=3$.
8. (a) Tom's time is $1 / 10$. Letting r be the unknown speed then John's total time is $(1 / 2) /(9)+(1 / 2) / r$. Equating the times gives $1 / 10=1 / 18+1 / 2 r$ and solving for r gives the result.
9. (c) $\log _{10} 5^{20}=20\left(\log _{10} 10-\log _{10} 2\right) \approx 20(1-.301) \approx 14$ so $5^{20} \approx 10^{14}$
10. (e) They are respectively $2^{32}, 2^{27}, 2^{32}, 2^{64}, 2^{81}$
11. (a) Let the persons be denoted A, B, C. The probability B has a different birth month than A is $11 / 12$, and assuming this then the probability C has a different birth month than both A and B is $10 / 12$; the answer is then $(11 / 12)(10 / 12)=55 / 72$.
12. (d) The change in the east direction is $x=20 \cos 30^{\circ}+20 \cos 60^{\circ}=10(1+\sqrt{3})$. The change in the north direction is the same. The total distance is $\left(x^{2}+x^{2}\right)^{1 / 2}=$
$\left[200(1+\sqrt{3})^{2}\right]^{1 / 2}$.
13. (e) $=3^{3}\left(3^{6}-1\right)=3^{3} \times 728=3^{3} \times 8 \times 91=3^{3} \times 2^{3} \times 7 \times 13$

14 (b) At the end A has (1/7)(6) $=6 / 7$ ounces of acid and B has $6-(1 / 7)(6)=36 / 7$ ounces of acid.
15. (d) Substitution of $x=-1$ and $x=2$ gives $-b+(a+b)+7-10=0$ and $8 b+4(a+b)-$ $14-10=0$ from which $a=3, b=1$. Division of $x^{3}+4 x^{2}-7 x-10$ by $(x+1)(x-2)=x^{2}-$ $x-2$ gives $x+5$.
16. (d) If $a \leq 4$ then $1 / a+1 / b \geq 1 / 4$ and if $a>8$ then $1 / a+1 / b<1 / 4$. The only cases are $a=5, b=20 ; a=6, b=12 ; a=b=8$.
17. (b) There are a total of $C(8,2)=(8 \times 7) / 2=28$ combinations of 2 persons from 8 . If there are 11 ties then there are 17 wins and the total number of points is $17 \mathrm{x} 5+11 \mathrm{x} 2$.
18. (d) The vertices of the triangle are determined by the solving the equations pairwise simultaneously. They are $P=(-4,-4), Q=(0,4)$ and $R=(2,2)$. Since the slopes of $y=x$ and $y=4-x$ are negative reciprocals, the angle at R is a right angle and the area is $(1 / 2)(P R)(Q R)=(1 / 2)(6 \sqrt{2})(2 \sqrt{2})=12$.
19. (b) If n successively takes on the values $1,2,3,4,5,6,7, .$. then $3^{n} \bmod 5$ successively takes on the values $3,4,2,1,3,4,2, \ldots$, the sequence repeating after each 4 numbers ; this is seen from $3^{n+4} \bmod 5=\left(3^{n} \bmod 5\right)\left(3^{4} \bmod 5\right)=3^{n} \bmod 5$. Thus $3^{100} \bmod 5=3^{4} \bmod 5$.
20. (c) Using binomial approximations $\sqrt{17}-\sqrt{15}=(16+1)^{1 / 2}-(16-1)^{1 / 2} \approx\left[16^{1 / 2}+\right.$ $\left.(1 / 2)(16)^{-1 / 2}\right]-\left[16^{1 / 2}+(1 / 2)(16)^{-1 / 2}(-1)\right]=0.25$. Note the remaining terms in the approximations of each of $\sqrt{17}$ and $\sqrt{15}$ form decreasing series which alternate in sign and thus yield values in magnitude less than the first term which is less than 0.01 .
21. (b) Let there be N women. For $n=1,2, \ldots$ the nth woman knew $n+10$ men so the N th one knew $N+10=50-N$ men; solving gives $N=20$.
22. (d) Solve $0<x^{2}-3<1$ which is equivalent to $3<x^{2}<4$.
23. (e) The distance from P to the center of C is 13 and this is the hypotenuse of a right triangle whose legs have length 5 and $P Q$; use the Pythagorean Theorem.
24. (b) $x(1)=2^{1 / 2}, x(2)=2^{3 / 4}, x(3)=2^{7 / 8}$ and $x(4)=2^{15 / 16}$.
25. (c) $x^{2}+y^{2}+z^{2}=(x+y+z)^{2}-2(x y+x z+y z)$ and $1 / x+1 / y+1 / z=(x y+x z+$ $y z) / x y z$. Thus $x^{2}+y^{2}+z^{2}=20^{2}-(2)(5)(10)=300$
26. (a) The upper half portion of R consists of a sector of one of the circles subtended by 60° (this has an area of $\pi r^{2} / 6$) and an additional small region whose area is $\pi r^{2} / 6$ minus the area of an equilateral triangle with sides of length r (which has area $\sqrt{3} / 4 r^{2}$). Thus the total area inside both circles is $2\left(2 \pi r^{2} / 6-\sqrt{3} / 4 r^{2}\right)$.
27. (d) If x is the solution and S the amount invested then $2 S=S(1+r)^{10}$ and $3 S=S(1+$ $r)^{x}$. Then (using any base >1 for the logarithm), $\log (1+r)=(\log 2) / 10=(\log 3) / x$. Solve for x.
28. (b) Subtracting the second equation from the first gives $0=(2-c) x+3$ and adding (-2) times the second equation to the third gives $0=-c x+9$. Solving simultaneously the resulting two equations gives $x=3$ and $c=3$. As a check, substituting in the three given equations gives $y=5$ in each case.
29. (c) $=\left(1-x^{2}\right) / x\left(1-x^{1 / 2}\right)=\left(1-x^{2}\right)\left(1+x^{1 / 2}\right) / x\left(1-x^{1 / 2}\right)\left(1+x^{1 / 2}\right)=(1-x)(1+x)(1+$ $\left.x^{1 / 2}\right) / x(1-x)=(1+x)\left(1+x^{1 / 2}\right) / x$ is near $(2)(2) / 1=4$ when x is near 1 .
30. (e) If the first attempt has x soldiers on each side then $x^{2}=S-100$ and $(x+1)^{2}=S+$ 61. Then $(x+1)^{2}=x^{2}+100+61$ which gives $x=80$. Thus $S=80^{2}+100=6500$.

