Answers and Brief Solutions to E2003

1. $(\mathrm{c})=(30 \times 80+40 \times 60+20 \times 50) /(30+40+20)=580 / 9=644 / 9$
2. (a) $x * x=1 / 2$ and $x *(1 / 2)=x /(x+1 / 2)=2 x /(2 x+1)$
3. (b) The discriminant $b^{2}-4 c$ must be a perfect square. The possible values for (b,c) are $(2.1),(3,2),(4,3),(4,4),(5,4),(5,6),(6,5)$.
4. (d) Bill missed 20% of his free throws which was twice as many as the 10% that John missed.
5. (c) Each 5 years the value is multiplied by $1500 / 1000=3 / 2$. Thus the answer is $\$ 1,000 x(3 / 2)^{2}=\$ 2,250$. Note: If $(1+r / 4)^{20}=3 / 2$ then $(1+r / 4)^{40}=(3 / 2)^{2}$
6. (c) Method 1: There are $3^{3}=27$ possible selections for the three years. There are $3!=6$ orderings of the three schools. Thus the answer is $6 / 27=2 / 9$. Method 2: The probability the second year gives a different school is $2 / 3$; in this case the probability the third year is again different is $1 / 3$. The answer is then $(2 / 3)(1 / 3)=2 / 9$.
7. (e) The altitude divides the length of side 5 into two parts of length x (adjacent to the side of length 4) and $5-x$. Then there are two right triangles and by the Pythagorean Theorem $x^{2}+h^{2}=4^{2}$ and $(5-x)^{2}+h^{2}=3^{2}$. Solving these gives $x=16 / 5$ and $h^{2}=16-$ $256 / 25=144 / 25$.
8. (b) $n=3$ gives the only solution since for all such triples of numbers at least one is divisible by 3.
9. (a) Since $1,2,-1$ are roots then $P(x)=k(x-1)(x-2)(x+1)$ for some k and $-24=$ $\mathrm{k}(-3)(-4)(-1)$ so $\mathrm{k}=2$ and $\mathrm{P}(3)=2(2)(1)(4)=16$.
10. (e) For each number in $\{1,2,3,4,5\}$ there are $2^{4}=16$ subset of $\{1,2,3,4,5\}$ containing that number. Thus the answer is $16(1+2+3+4+5)=240$.
11. (e) Let $\mathrm{B}_{1}, \mathrm{G}_{1}$ be the number of boys, girls in 1990 and $\mathrm{B}_{2}, \mathrm{G}_{2}$ the number of boys, girls in 2000. Then $\mathrm{B}_{2}=1.1 \mathrm{~B}_{1}, \mathrm{G}_{2}=1.4 \mathrm{G}_{1}$ and $\mathrm{B}_{2}+\mathrm{G}_{2}=1.3\left(\mathrm{~B}_{1}+\mathrm{G}_{1}\right)$. Combining gives $.1 \mathrm{G}_{1}$ $=.2 \mathrm{~B}_{1}$.
12. (d) From the inequality $5 x^{2}+x-3>2 x^{2}+6 x-1$ obtain $3 x^{2}-5 x-2=$ $(3 x+1)(x-2)>0$ which is true if $x>2$ or $x<-1 / 3$.
13. (b) Since $616=\left(2^{3}\right)(7)(11)$ it follows that $n=(2)(7)(11)=154$.
14. (e) After evaporation the weight of the salt in the solution is still 10 pounds and the solution is 40% salt; thus the weight of the solution is $10 / 0.4=25$ pounds.
15. (c) Squaring both sides gives $m^{2}+2 n^{2}+2 m n \sqrt{2}=41+24 \sqrt{2}$ giving $m^{2}+2 n^{2}=41$ and $2 \mathrm{mn}=24$ since m, n are integers. These equations may be solved simultaneously to give $m=3$ and $n=4$.
16. (c) If a, b, c are the lengths of the sides then $a+b+c=16$ and the sum of any two of a,b,c exceeds the third. The possible cases are the triples 7,7,2; 7,6,3; 7,5,4; 6,6,4; 6,5,5.
17. (c) From $2 \mathrm{a}+\mathrm{b}=6,2 \mathrm{~d}+\mathrm{e}=8$; and $\mathrm{a}+2 \mathrm{~b}=6, \mathrm{~d}+2 \mathrm{e}=4$ it follows that $\mathrm{a}=\mathrm{b}=2$ and $e=0, d=4$. Thus $2 x+2 y=8$ and $4 x=12$ which gives $x=3, y=1$.
18. (e) Let d be the distance between towns A and B and t be the time after they start until they meet. Then $d=(d / 6) t+(d / 8) t$; solve for t.
19. (d) Let x be the common value of the three logarithms; then $4^{x}=a, 6^{x}=b$ and $9^{x}=a+$ b. Hence $b / a=(3 / 2)^{x}=(a+b) / b$ from which $b^{2}-a b-a^{2}=0$. Solve for b using the quadratic formula and form the ratio b / a.
20. (d) Let x be the unknown distance, $\mathrm{T}_{1}, \mathrm{~T}_{2}$ the points of tangency and $\mathrm{O}_{1}, \mathrm{O}_{2}$ the centers of the respective circles $\mathrm{C}_{1}, \mathrm{C}_{2}$. Then the triangles $\mathrm{PO}_{1} \mathrm{~T}_{1}$ and $\mathrm{PO}_{2} \mathrm{~T}_{2}$ are similar giving the equality $\mathrm{x} / 2=(7-\mathrm{x}) / 3$.
21. (a) There are $C(8,2) \times 10=280$ games played. If the champion wins n games and the common difference of succesive wins is k then $n+(n-k)+\ldots+(n-7 k)=8 n-28 k=280$ or $2 \mathrm{n}-7 \mathrm{k}=70$. Then k must be even and the smallest possible value for k is 2 which gives $2 \mathrm{n}=84$.
22. (e) The line through $(a, 0)$ perpendicular to $y=2 x$ has the equation $y=-1 / 2(x-a)$ and intersects the line $\mathrm{y}=2 \mathrm{x}$ in the point $(\mathrm{a} / 5,2 \mathrm{a} / 5)$. The distance formula gives $2^{2}=(4 \mathrm{a} / 5)^{2}+$ $(2 \mathrm{a} / 5)^{2}$ which simplifies to $100=20 \mathrm{a}^{2}$
23. (c) The equation of the line is $y=-2 x+4$. The equation of the radius drawn to this line is $y=x / 2$ and the point of tangency is the point $(8 / 5,4 / 5)$ which is the intersection of these two lines. From $r^{2}=(8 / 5)^{2}+(4 / 5)^{2}$ the solution results.
24. (a) $A^{24}=2^{15}, B^{24}=3^{8}$ and $C^{24}=4^{6}=2^{12}$. Since $2^{7}>3^{4}>2^{6}$ it follows that $A^{24}=2^{15}>$ $2^{7} \times 2^{7}>3^{4} \times 3^{4}=B^{24}>2^{6} \times 2^{6}=C^{24}$.
25. (b) The given fraction $=(2 x-1)\left(2^{x}+1\right) / 2\left(2^{x}-1\right)=\left(2^{x}+1\right) / 2$ and if $0<x<0.1$ then $1<2^{\mathrm{x}}<2$ so the given fraction is between 1 and 3/2 and hence between 1 and 2 .
26. (d) Let F be the midpoint of AB ; then CF is perpendicular to AB . . Then $\tan 60^{\circ}=$ $\mathrm{CF} / \mathrm{AF}=\mathrm{CF} /(3 / 2)$ gives $\mathrm{CF}=3 \sqrt{3} / 2$ and therefore $\tan \angle \mathrm{CDE}=\mathrm{CF} / \mathrm{DF}$ $=C F /(1 / 2)$ gives the result.
27. (e) For some integer $j, n=72 j+41=(18)(4) j+(18)(2)+5=18(4 j+2)+5$. Thus $n-$ 5 is divisible by 18 .
28. (a) If divided by 100 the remainders of 7^{n} for $\mathrm{n}=0,1,2,3,4,5,6$, are $1,7,49,43,1,7$, $49, \ldots$; thus every fourth remainder is 1 . Also note $7^{100}=\left(7^{4}\right)^{25}=(24 \times 100+1)^{25}=100 \mathrm{~N}$ +1 for some integer N using a binomial expansion since each term but the last is divisible by 100 .
29. (b) Each vertex can be joined by a diagonal to 7 other vertices; this counts each diagonal twice. The answer is (10)(7)/2 = 35 diagonals
30. (d) $n=2 m-5$ gives $m-3 n=m-3(2 m-5)=-5 m+15=5(3-m)$
