ANSWERS AND BRIEF SOLUTIONS TO E2004

1 (a) Solve (.75)(60) $+\mathrm{N}=(.8)(60+\mathrm{N})$ for N ; this gives $.2 \mathrm{~N}=3$ and hence $\mathrm{N}=15$.
2: (d) Let x be the side of the triangle; then $3 x / 4$ is the side of the square. The area of the square is $9 / 16 x^{2}$, and of the triangle is $1 / 2$ base x altitude $=1 / 2(x)(\sqrt{3} x / 2)=\sqrt{3} x^{2} / 4$.

3 (b) By division $3 / 7=0 . \overline{428571}$ (i.e. this is a repeating sequence of 6 digits). Since 2 is the second digit in the sequence and the remainder of the division of 50 by 6 is 2 , the conclusion follows

4 (d) If $\log _{10} x=y$ then $\log _{10} 100 x=\log _{10} 100+\log _{10} x=2+y$
5 (c) Let John be assigned a seat; then there are 5 seats remaining and 2 of them are next to him. Therefore the probability Mary is in one of those 2 seats is $2 / 5$.

6: (e) It is the distance between the nearest points of intersection of the circles and the straight line $\mathrm{y}=\mathrm{x}$ joining the centers (since this line is perpendicular to the parallel tangents at the intersection points). These points of intersection are $(2,2)$ and $(6,6)$ and the distance between them is $4 \sqrt{2}$

7 (a) If there were b boys and g girls then $3 / 4 b+3 / 5 g=2 / 3(b+g)$. Thus $1 / 12 b=$ $1 / 15 \mathrm{~g}$ or $\mathrm{b} / \mathrm{g}=4 / 5$.

8 (c) The terms is the set of numbers $2+3 \mathrm{~d}, \mathrm{~d}=1,2, \ldots, 19$ and the sum is (2)(20) + $(3)(19)(20) / 2=610$; the average is $610 / 20=30.5$.

9 (b) Adding the first and third equations give $y=(a+2) x$; adding the second and third gives $\mathrm{z}=1-3 \mathrm{x}$. Substituting these into the third equation gives $(7+a) \mathrm{x}=1$ which does not have a solution is a $=-7$. The same result occurs when substituting into the other two equations. If $a \neq-7$ then there is a solution for x, y, z.

10 (e) Let the endpoints of C be A and B. The area of the triangle with vertices A, B, O is $(1 / 2)(1 / 2)(\sqrt{3})$ and the area of the circular region bounded by the circle and segments OA and OB is $\pi / 3$ since the angle subtended by AB is 120°

11 (e) Substitute 1 for x and set the result equal to 0 ; this gives $4-\mathrm{b}=0$.
12 (c) Squaring both sides and simplifying gives $x^{2}+1 / x^{2}=7$. Again squaring both sides and simplifying gives the result $x^{4}+1 / x^{4}=47$.

13 (d) If x is the unknown then $4+.7 x=.5(10+x)$; solving gives $x=5$.
14 (b) The prime factors of 25 ! are the prime numbers less than or equal to 25 : i.e. $2,3,5,7,11,13,17,19$ and 23.

15 (a) If P is the amount invested and r is the rate then $2 P=P(1+r / 4)^{40}$; solve for r. (Note: The answer is very close to $.07=7 \%$)

16 (d) Method 1: Let $\mathrm{z}=\mathrm{BC}$. Then by the law of cosines $\mathrm{y}^{2}=\mathrm{x}^{2}+\mathrm{z}^{2}-\mathrm{xz}$. Solving for z using the quadratic formula gives the discriminant value $4 y^{2}-3 x^{2}$; set this value equal to 0 and solve for y / x.
Method 2: There is exactly one possible triangle if $\angle \mathrm{ACB}$ is a right angle and hence y / x $=\sin 60^{\circ}$.

17 (d) In both cases they meet $2 / 3$ of the distance from A to the position of II when A begins. . If r is the rate of I and D is the distance between A and B then I goes $2 D / 3$ if they start at the same time and $(2 / 3)(D-r / 24)$ if I starts 5 minutes later. From (2/3)D $(2 / 3)(D-r / 24)=2$ it follows that $r=72$.

18 (e) An equation of the line through the given points is $\mathrm{y}-3=5 / 4(\mathrm{x}-2)$. Thus x can assume any of the values $2+4 \mathrm{k}, \mathrm{k}=0,1,2, \ldots, 7$
19. (a) $2^{10}<2 \times 10^{3}<3^{7}<3 \times 10^{3}<5^{5}$ implies $2^{100}<3^{70}<5^{50}$

20 (b) From $a=x^{1 / 10}, b=x^{1 / 5}$ it follows that $x=(a b c)^{2}=x^{1 / 5} x^{2 / 5} c^{2}$ and hence $c=x^{1 / 5}$.
21 (b) For each $i, i=0,1,2, \ldots, 10$ there are ($11-i$) tuples (i, j, k) such that $i+j+k=10$; thus summing for all $\mathrm{i}=0,1,2, \ldots, 10$ there is a total of $11+10+9+\ldots+1=(11)(12) / 2=$ 66.
22. (d) Let θ (degrees) be the measure of the smaller interior angles of the rhombus; then the measure of the adjacent interior angles are $180-\theta$. By the law of cosines $4=2 x^{2}-$ $2 x^{2} \cos \theta$ and $9=2 x^{2}+2 x^{2} \cos \theta$; eliminating x gives $\cos \theta=5 / 13$. Substitute this value in one of the previous equations and solve for x.

23 (d) If each National League team plays y games against American League teams then $14 \mathrm{x}=16 \mathrm{y}$ or $7 \mathrm{x}=8 \mathrm{y}$. The smallest positive integer value for x is 8
24. (b) There are $9 x 8=72$ total ways to place X and O. For X and O to be in sub-squares with a common side: if X is in the middle square there are 4 ways for O; if X is in one of the 4 corners there are 2 ways for O ; if X is in one of the 4 squares between corners there are 3 ways for O . Thus the answer is $(1 \mathrm{x} 4+4 \mathrm{x} 2+4 \mathrm{x} 3) / 72=1 / 3$.

25 (c) By calculation $\mathrm{x}_{1}=\pi /(1+\pi), \mathrm{x}_{2}=\pi /(1+2 \pi)$ and if $\mathrm{x}_{\mathrm{n}}=\pi /(1+\mathrm{n} \pi)$ then $\mathrm{x}_{\mathrm{n}+1}=$ $\pi /(1+n \pi) \div[1+\pi /(1+n \pi)=\pi /[1+(n+1) \pi]$
26. (e) Since $4 \mathrm{n}+1$ is odd let $4 \mathrm{n}+1=(2 \mathrm{k}+1)^{2}$. Then $\mathrm{n}=\mathrm{k}^{2}+\mathrm{k}$ so any positive integer substituted for k gives a value of n which makes $4 n+1$ as a perfect square

27 (b) If $x \leq-3$ the equation is $-(x-5)-(x+3)=$ a which has solution $x=1-a / 2$; if -3 $<x<5$ the equation is $-(x-5)+(x-3)=$ a which has no solution for x since a >10; if x ≥ 5 the equation is $(x-5)+(x+3)=$ a which has solution $x=1+a / 2$. Thus the sum of solutions is $(1-a / 2)+(1+a / 2)=2$,
28. (e) Completing squares gives $3(x-y)^{2}+(y-2)^{2}+7$
29. (a) The operations on the graph give the successive equations $x=y^{2}+1, x=y^{2}+3$, and $x=(y-2)^{2}+3$; substitute $y=4$ in the last equation.
30. (d) The statement is equivalent to $\mathrm{x}<1$ and $\mathrm{y} \geq 7$; then only (d) is always true..

