Answers and Brief Solutions to E2005

1. (e) The total score was (30)(67.2) $=2016$ and 2016/28 $=72$.
2. (d) From $x(.8)(.8)=49.92$ it follows that $x=78$.
3. (a) $f(2 x+1)=A(2 x+1)+B=2 A x+(A+B)=x=1 x+0$ for all numbers x gives $2 A$ $=1$ and $A+B=0$ from which $A=1 / 2$ and $B=-1 / 2$.
4. (b) It is the area of the rectangle with vertices $(0,0),(0,5),(6,5),(6,0)$ minus the sum of the areas of the three right triangles having vertices $(0,0),(0,5),(3,5) ;(3,5),(6,5),(6,2)$; $(0,0),(6,0),(6,2)$. This is $30-15 / 2-9 / 2-6$.
5. (c) An equation of the line through $(3, a)$ and $(a, 3)$ is $y-a=-(x-3)$. Substituting $x=$ $1, y=4$ gives $4-a=-(-2)$.
6. (e) There are ten possible cases, all equally likely. Of these 7 yield a red ball and of these 7 cases 3 came from box 1 . Thus the answer is $3 / 7$.
7. (b) For each x there are $40-x$ pairs. Thus there are $1+2+3+\ldots+39=(39)(40) / 2$ $=780$ pairs.
8. (d) After the second transfer A has $(10-x)+x[x /(10+x)]=8$. This simplifies to $8 x=20$.
9. (b) The sum of 4 successive integers must be an even number. Note 525 is divisible by $3,5,7$ so in those cases use the quotient as the middle number. Note $525 / 6=87.5$ so use the three integers immediately above and below 87.5
10. (a) If R is the number of right answers then $S=R-(N-R) / 4$: solve for R

11 (a) From $200=100(1+r)^{10}$ and $S+200=S(1+r)^{20}$ it follows that $(1+r)^{10}=2$ and S $+200=S(2)^{2}$ from which $S=200 / 3$.
12. (d) Let x be the height of the other pole, a the distance from the base of the 100 foot pole to the point on the ground below where the wires cross and b the distance between the bases of the two poles. Then by similar triangles $40 / a=x / b$ and $40 /(b-a)=100 / b$. From the second equation $b=5 / 3 a$; substitution in the first equation gives $x=200 / 3$.
13. (c) Using the law of cosines, $4^{2}=3^{2}+2^{2}-(2)(3)(2) \cos A$ which gives $\cos A=-1 / 4$; apply $\sin ^{2} A+\cos ^{2} A=1$.

14: (d) All triangles have sides of length 6,8 and area (1/2)(6)(8) $\sin \theta=24 \sin \theta$ where θ is the angle between the sides of length 6 and 8 . This area is greatest when $\sin \theta=1$ which implies $\theta=90^{\circ}$; by the Pythagorean Theorem the other side has length 10 .

15 (e) Method I: If r, s are the other two roots then $r+s+2=-(-4)$ and $-2 r s=30$. Solving gives $-3,5$ as values of r,s. Method II: $P(2)=22+2 A=0$ gives $A=-11$. Division of $x^{3}-4 x^{2}+-11 x+30$ by $x-2$ gives $x^{2}-2 x-15=(x-5)(x+3)$ which has roots $-3,5$.

16 (b) By computation if $\mathrm{x}_{2}=a$ then $x_{3}=1+a, x_{4}=1+2 a, x_{5}=2+3 a, \ldots, x_{10}=21+$ $34 a$ and $21+34 a=100$ gives the result.
17. (d) Each time Jerry runs once around the track, Tom gains $2 / 9$ of the track length. Thus after Jerry has run $9 / 2$ times (and Tom 11/2 times) around the track, Tom has reached the same position as Jerry. Then Tom has run (11/2)(1/4) miles.

18 (c) 6 is a factor of each term of the sum except $1!=1$ and $2!=2$
19. (a) If $x<-5$ or $x>2$ the product is positive and if $x=-5,-3,0,2$ the product is 0 . Substitution of the remaining integers $-4,-2,-1$ and 1 gives negative values only for -4 and 1 .
20. (e) $a=\left(2^{4}\right)^{15}=16^{15} ; b=\left(3^{3}\right)^{15}=27^{15} ; c=\left(5^{2}\right)^{15}=25^{15}$
21. (c) From $y=2 / 3 x$ and $z=1 / 3 x$ and $x+y+z=1$ it follows that $x=1 / 2, y=1 / 3$ and z $=1 / 6$. Then $(1-x) /(1-y)=(1 / 2) /(2 / 3)=3 / 4$.

22 (e) Let $x=a^{1 / 2}$ and $y=b^{1 / 3}$. Then $x+y=1$ and $x^{2}+y^{2}=5$. Thus $x^{2}+(1-x)^{2}=5$ from which $x=-1,2$. The only real solution is $a=2^{2}=4$

23 (d) By factoring the expression simplifies to $1+4 / x$. If $|x-1|<.001$ then
$.9<x<1.1$ and $3<4 / 1.1<4 / x<4 / .9<5$.
24. (c) $z=1 / 2-1 / 2 x$ and $y=3 / 2-1 / 2 z=5 / 4+1 / 4 x$. Then $a x-2 y+5 z=a x-10 / 4-1 / 2$ $x+5 / 2-5 / 2 x=0$ gives $(a-3) x=0$ which is satisfied by every number x if $a=3$. For each solution for x there are then solutions for y and z.
25. (d) Let x be the length of $A D$ and $2 \theta=\angle B A C$. Then $\cos \theta=3 / x$ and $3 / 5=\cos 2 \theta=$ $2 \cos ^{2} \theta-1=18 / x^{2}-1$ which gives $x=3 \sqrt{5} / 2$.
26. (e) $1 / \log 2+1 / \log 4=1 / \log 2+1 /(2 \log 2)=(3 / 2) / \log 2=1 / \log c$ gives $c=2^{2 / 3}$
27. (c) $5 x+51 y=5(100)+51(1)$; hence $51(y-1)=5(100-x)$. Since 5 and 51 are relatively prime it follows that $y-1=5 n$ and $100-x=51 n$ for some positive integer n. Since $x=100-51 n>0$ it follows that $n=1$, giving $x=49$ and $y=6$.
28. (a) The probability A wins both the second and third games is $(.8)(.8)=.64$; the probability A loses the second and wins the third is $(.2)(.2)=.04$. The answer is the sum.

29 (b) Let the circle lie in the first quadrant and the tangent lines coincide with the x, y axes and intersect at the origin; let the point have coordinates $(9,2)$. Then the center of the circle is (r,r) and the triangle with vertices (r,r), (9,2) and (r.2) is a right triangle with legs of length $(r-9)$ and $(r-2)$ and hypotenuse r. By the Pythagorean Theorem $r^{2}=(r-$ $9)^{2}+(r-2)^{2}$ which simplifies to $(r-5)(r-17)=0$.

30 (b) The implication 'if $x<7$ then $x<4$ ' is false only if ' $x<7$ ' is true and ' $x<4$ ' is false.

