Answers and Brief Solutions to E2006

1. (c) Let $C=\pi D$ where D is the diameter. Then solving $C+1=\pi(D+x)$ simultaneously with $C=\pi D$ for x gives $x=1 / \pi$.
2. (e) Let $B D$ be the altitude from B to $A C$; then $|B D|=2 \operatorname{Sin} 60^{\circ}=\sqrt{3}$. Also $|A D|=2$ $\cos 60^{\circ}=1$ and hence $|D C|=3-1=2$. Thus $|B C|^{2}=(\sqrt{3})^{2}+2^{2}=7$
3. (b) The terms of the sequence are $a, b, a+b, a+2 b, 2 a+3 b, 3 a+5 b, 5 a+8 b$. Solving $3 a+5 b$ $=21$ and $5 a+8 b=34$ simultaneously gives $a=2, b=3$.
4. (d) From $(3+x) / 2=-1$ and $(-2+y) / 2=5$ it follows that $x=-5$ and $y=12$.
5. (b) Initially there were the four equally likely possibilities $R R, R G, G R, G G$. If at least one is red then there are the three equally likely cases $R R, R G$, and $G R$ and only one of these has two red balls.
6. (a) Using the quadratic formula the sum is $-b$.
7. (d) Let x be the unknown; then $(2+x) /(10+x)=0.4$. Solve for x.
8. (d) The student must get more than (.9)(75) $-17=50.5$ correct answers on the remainder of the test
9. (b) Solve $x=20+y$ and $x=1.1 y$ to get $x=220$.
(a) 1
(b) $3 / 2$
(c) 2
(d) $2 \sqrt{2}$
(d) $3 \sqrt{2}$
10. (c) The region is the diamond shaped figure with vertices $(1,0),(0,1),(-1,0),(0,-1)$ which can be partitioned into 4 triangles each with area $1 / 2$.
11. (e) There are $9 * 1=9$ digits from 1 to $9,90 * 2=180$ digits from 10 to $99 ; 900 * 3=$ 2700 digits from 100 to 999 and 4 digits for 1,000 . The answer is $9+180+2700+4$.
12. (b) Let $x=10 a+b$. Then $2(10 a+b)=10 b+a+14$. Hence $19 a-8 b=14$, and this has the solution $a=2, b=3$.
13. (a) There are 92-48 = 44 students who take math but not science and 56-48=8 students who take science but not math; the sum is 52 .
14. (d) Let there be x pennies and y dimes. Then $x+10 / 3 x+10 y=360$; thus $13 x+30 y$ $=1080$. Then $y=36-13 x / 30$ so x is divisible by 30 and $13 x<1080$. The possible values of x are 30 or 60, and hence 60 pennies, 40 nickels and 10 dimes gives 110 as the answer.
15. (c) Solve $2 P=P(1+r / 4)^{32}$ for r.
16. (d) $(\sin x+\cos x)^{2}=1+2 \sin x \cos x=1+\sin 2 x=(5 / 4)^{2}$ gives $\sin 2 x=9 / 16$.
17. (a) $\log _{4} a=1 / 2 \log _{2} a$ and $\log _{8} b=1 / 3 \log _{2} b$. Thus $1 / 2 \log _{2} a+\log _{2} b=1$ and hence $\log _{2} a b^{2}=2$ from which $a b^{2}=4$
18. (d) If there are B boys and G girls and there are N questions on the test then the total number of correct answers is
$[3 / 4 B+2 / 3 G] N=[7 / 10(B+G)] N$.
Simplifying gives $1 / 20 B=1 / 30 G$ from which $B / G=2 / 3$.
19. (c) From $835=7 * 119+2$ it follows that n can be any odd integer from 1 to 119 inclusive. There are $(1+119) / 2=60$ such integers.
20. (b) If a is a real number then $|a-1|>|a+1|$ if and only if $a<0$. Thus the solution set of the given inequality is the solution set of $x^{2}-4 x=x(x-4)<0$ which is the interval $(0,4)$.
21. (b) From $x^{2}-y^{2}=(x+y)(x-y)=403=(31)(13)=(403)(1)$ it follows that $x+y=31$ and $x-y=13$ which gives $y=9$ or $x+y=403$ and $x-y=1$ which gives $y=201$.
22. (e) Form a triangle whose vertices are the center of the circle and two of the vertices of the given equilateral triangle. This triangle has two sides of length r, with included angle 120°, and the other side of length 2 . By the Law of Cosines, $2^{2}=2 r^{2}\left(1-\cos 120^{\circ}\right)$ which simplifies to $r^{2}=4 / 3$.
23. (e) Let $x=1110$. Then $a=x /(x+1), b=(2 x+1) /(2 x+3)$ and $c=(3 x+1) /(3 x+4)$. Then $(2 x+1)(3 x+4)>(2 x+3)(3 x+1)$ implies $b>c$ and $(3 x+1)(x+1)>x(3 x+4)$ implies $c>a$.
24. (c) $2^{24}-1=\left(2^{6}-1\right)\left(2^{6}+1\right)\left(2^{12}+1\right)=63 x 65 \times 4097$. An even number cannot be a divisor and by long division arithmetic 61,67 and 69 do not divide 4097.
25. (a) This sum is the set of all products in the expansion of

$$
(1+2+3+4)(5+7+8)(9+10+11)=10 \times 20 \times 30
$$

26. (a) The discriminant of $x^{2}-2 x+2$ is negative so it gives no points and of $x^{2}+2 x-2$ is positive so it gives two points; $x^{3}+1$ has one real root so the total is $2+1=3$.
27. (b) Let $y=3^{2 x}$; then $y+y^{2}=20$ gives $y=4$. Then $3^{3 x}=4^{3 / 2}$
28. (e) Let p be the probability that Bill wins. Then $p=1 / 6+(5 / 6)(5 / 6) p$
29. (c) Since the equation has four prime number solutions, each must divide the number 1430 which is the product of $2,5,11$ and 13 ; hence these are the only possible positive integer solutions
30. (e) Let x be the unknown, t the time for Tom to get from home to Mary's work and t ' the time for Tom to reach Mary when she walked. Then Mary's travel times yield the equation $\left(x+t^{\prime}\right)+40=t+60$ and Tom's travel times yield $2 t=2 t^{\prime}+40$. Solving simultaneously gives $x=40$.
