Answers and Brief Solutions to E2007

1. (b) $a=3 b / 10$ so $3 a / 4 b=9 / 40 ;(9 / 40) \times 100=22.5$
2. (a) If x is the fourth term then $(1+7+8+x) / 4=7$ so $x=12$.
3. (c) From $x=2 y-12=2(2 z-6)-12=4 z-24=4(2 x-8)-24$ it follows that $7 x=56$
4. (e) Let y, z be the scores on the second and third tests. Then $y=4 x / 3$ and $y=5 z / 4$. Thus $z=(4 / 5)(4 x / 3)$.
5. (e) If $a=-2, b=-1, c=1$ then (a), (b) and (d) are not true; if $a=2, b=1, c=-1$ then (c) is not true
6. (d) From $3 x \geq y$ and $5 y \geq z$ it follows that $15 x \geq 5 y \geq z$; hence from $y+z \geq 65$ it follows that $3 x+15 x \geq 65$ which implies $x \geq 4$ since x is an integer. The values $x=4$, $y=12, z=60$ satisfies the given conditions and shows that 4 is the minimum.
7. (e) $(\sin x+\cos x)^{2}=1+2 \sin x \cos x=1+\sin 2 x=(5 / 4)^{2}$ gives $\sin 2 x=9 / 16$.
8. (c) Let $N=11 x+9=7 y+5$; then $y=(11 x+4) / 7$ and 6 is the smallest value of x for which y is an integer; thus $N=75$.
9. (c) For $a=j, j=1,2, \ldots, 9$ there are $10-j$ pairs. Thus the answer is $9+8+7+\ldots+1=$ 45
10. (a) The triangles $A P B$ and $D P C$ are similar and thus the distance from P to $D C$ is twice the distance from P to $A B$. Hence the answer is $(2 / 3)(6)=4$.
11. (d) Every 100 years the value is increased by multiple of 2^{5}. Hence by the year 2001 the value has increased by a multiple of 2^{100}. Since $2^{10}=1,024>1,000=10^{3}$ it follows that $2^{100}>10^{30}$. Since $2^{10}<2 \times 10^{3}$ it follows that $2^{100}<\left(2 \times 10^{3}\right)^{10}<2 \times 10^{33}$
12. (c) $7=2^{x}$ so the answer is $\left(2^{x}\right)^{3 / x}=2^{3}=8$
13. (b) Let r_{b} and r_{t} be the speeds of Bill and Tom respectively, and d the distance around the track. Then $60 r_{b}+60 r_{t}=d=50 r_{b}+80 r_{t}$. Hence $r_{t}=1 / 2 r_{b}$ and $d=$ $50 r_{b}+40 r_{b}=90 r_{b}$.
14. (d) The lines perpendicular to the two tangents have equations $y-4=2(x-3)$ and $y-2=-1 / 2(x-5)$. They intersect at $(1,0)$ which is the center of C and the distance from the center to either point of tangency is $2 \sqrt{5}$
15. (a) After the transfer to B, B has 13 pounds of water and 2 pounds of salt. The final amount of water in A is $5+13 y / 15$ and the amount of salt in A is $2 y / 15$. Set $(2 \mathrm{y} / 15) /(5+\mathrm{y})=1 / 20$ and solve for y.
16. (c) The two balls can be drawn in $A=(n+5)(n+4) / 2$ ways and for $B=n(n-1) / 2$ of these ways both balls are green. Then $B / A \geq 1 / 2$ if $n^{2} \geq 11 n+20$; the least n is $n=13$.
17. (a) We consider all sequences of 0 's and 1 's of length 6 where the first digit is a 1 and the remaining 5 digits include at least four 0 's. There are 5 sequences with four 0 's and 1 with five 0 's giving a total of 6 .
18. (b) First replace x by $x-1$, then y by $y-2$ and finally x by $-x$ and y by $-y$; the resulting equation is $-\mathrm{y}-2=(-\mathrm{x}-1)^{2}$ which simplifies to $\mathrm{y}=-\mathrm{x}^{2}-2 \mathrm{x}-3$.
19. (c) Let $x=100$. Then $A=(x+1) /(2 x+5)=1 / 2-(3 / 2) /(2 x+5) ; B=(2 x+3) /(4 x+9)$ $=1 / 2-(3 / 2) /(4 x+9)$ and $C=(3 x-1) /(6 x+1)=1 / 2-(3 / 2) /(6 x+1)$. Thus $C>B>A$.
20. (a) If k is a positive integer then $p(k+1)-p(k)=2 k+1+b$. Thus $7=4+1+b$ and hence $b=2$. Therefore $p(4)-p(3)=6+1+2=9$.
21. (b) If $x_{2}=a$ then $x_{3}=1+a, x_{4}=1+2 a, x_{5}=2+3 a, \ldots, x_{10}=21+34 a$ and $21+34 a$ $=100$ gives the result.
22. (c) The possible winner sequences are $A A, A B A, B A A$ which have respective probabilities 4/9, 4/27 and 4/27; adding gives the answer
23. (d) $B=(3,-1)$ and $C=(-1,3)$.
24. (d) Method 1: By sketching the graphs of $y=|x+1|$ and $y=|2 x-1|$ it is seen there is only one solution if the graph of $y=|2 x-1|$ is shifted up $3 / 2$ units so that the resulting graph lies above and intersects the graph of $y=|x+1|$ at the single point (1/2,3/2).
Method 2: For $x \leq-1$ the given equation is $-x-1=-2 x+1+c$ which has solution $x=2$ $+c$ so there is no solution for $x \leq-1$ and $c>0$. For $-1<x \leq 1 / 2$ the equation $x+1=-2 x$ $+1+c$ has solution $x=c / 3$. For $1 / 2<x$ the equation $x+1=2 x-1+c$ has solution $x=2$ $-c$; setting $c / 3=2-c$ gives $c=3 / 2$.
25. (a) If $x \neq 2$ then $f(x)=-1 / 2 x$ and if $1.9<x<2.1$ then $-1<-1 / 3.8<f(x)<-1 / 4.2<0$.
26. (b) By algebra, $y=7 x /(x-7)$ and hence $x>7$. Since $y \geq x$ it is also seen that x ≤ 14; otherwise $1 / x+1 / y<1 / 7$. Solutions are $(x, y)=(8,56)$ and $(14,14)$. For other values of x, if $7<x \leq 14$ then y is not an integer.
27. (d) Let G, B respectively be the number of senior girls, boys and T the total number of girls (boys) who attended the dance. Then $G / B=2 / 3$ and $(T-B) /(T-G)=3 / 7$. Dividing the numerators of these fractions by T and letting $g=G / T$ and $b=B / T$ gives $g / b=2 / 3$ and $(1-b) /(1-g)=3 / 7$. Solve the equations for g.
28. (d) Let d be the length of the altitude and θ the angle between the side of length a and the hypotenuse. Then $\sin \theta=d / a, \cos \theta=d / b$ and hence $(d / a)^{2}+(d / b)^{2}=1$. Solve for d and apply $c^{2}=a^{2}+b^{2}$
29. (c) This may be observed from the identity
$n^{100}+1=(n-1)\left(n^{99}+n^{98}+n^{97}+\ldots+n+1\right)+2$. (Note: n can be any positive integer except 1)
30. (a) Let $x^{3}+5 x^{2}-13 x-2=\left(x^{2}+a x+1\right)(x-b)=x^{3}+(a-b) x^{2}+(1-a b) x-b$. Then $a-b=5,1-a b=-13$ and $b=2$ which is satisfied by $b=2, a=7$.
