

Preliminary Exam

1. How many ways are there of choosing a, b from $\{1,2,3,4,5,6,7,8,9\}$ such that $a<b$ and $a+b$ is a multiple of 3 ?
(a) 6
(b) 9
(c) 12
(d) 18
(e) 36

Soln: (c) 3×3 from $\{1,4,7\}$ and $\{2,5,8\}$, then another 3 from $\{3,6,9\}$
2. John has taken a total of n tests each worth 100 points, and his average was 78. If on the last test he had made 91 instead of 70 , then his average would have been 81 . What is n ?
(a) 7
(b) 6
(c) 5
(d) 4
(e) 3

Soln: (a) $78 n-70+91=81 n$ so $21=3 n$.
3. Pat sold two DVDs on eBay for $\$ 24$ each. If she made a profit of 20% on one and a loss of 20% on the other, then what was the net result of the sale of the two items?
(a) $\$ 1$ profit
(b) $\$ 1$ loss
(c) $\$ 2$ profit
(d) $\$ 2$ loss
(e) no profit or loss

Soln: (d) ...
4. If $\frac{x}{y-6}=\frac{y}{z-3}=\frac{z}{x-4}=2$ then x equals
(a) 12
(b) 11
(c) 10
(d) 9
(e) 8

Soln: (e) Straightforward algebra...
5. Jar A has 2 gallons and Jar B has 3 gallons of acid solution. If the fraction of acid in Jar A is $2 / 5$ and the fraction of acid in the combined contents of Jar A and Jar B would be $1 / 2$, then what is the fraction of acid in Jar B?
(a) $8 / 15$
(b) $3 / 5$
(c) $7 / 10$
(d) $14 / 25$
(e) $17 / 30$

Soln: (e) $\frac{2}{5} 2+x 3=\frac{1}{2} 5$ so $3 x=\frac{5}{2}-\frac{4}{5}=\frac{17}{10}$.
6. For how many integers x from 1 to 100 is $x^{2}+x$ a multiple of 7 ?
(a) 21
(b) 25
(c) 28
(d) 32
(e) 36

Soln: (c) $7 \mid x(x+1)$ implies $7 \mid x$ or $7 \mid x+1$. Then note $14<100 / 7<15$.
7. In how many ways can 8 persons be grouped into 4 pairs?
(a) 128
(b) 105
(c) 96
(d) 72
(e) 64

Soln: (b) $7 \cdot 5 \cdot 3=105$
8. Given a triangle $\triangle A B C$, if sides $A B$ and $A C$ each have length 3 and $B C$ has length 2 then the length of the altitude from B to side $A C$ is
(a) $3 / 2$
(b) $\sqrt{3}$
(c) $4 \sqrt{2} / 3$
(d) $2 \sqrt{3} / 3$
(e) $7 / 4$

Soln: (c) Let y be the altitude and x be the leg from the altitude to A. Then $y^{2}=3^{2}-x^{2}=2^{2}-(3-x)^{2}$ so $x=7 / 3$ and $y^{2}=32 / 9$.
9. If a, b are positive integers, $a \leq b \leq 9$, then how many different triangles are there with sides of length a, b, and 9 ?
(a) 25
(b) 22
(c) 32
(d) 29
(e) 45

Soln: (a) Use $a+b<9$ with $a \leq b$ and count.
10. The graphs of $y=x-3$ and $y=m x+1$ meet at a point whose x and y coordinates are each positive if and only if m is in the interval
(a) $(-1,3)$
(b) $(1 / 3,1)$
(c) $(1 / 3,3)$
(d) $(-1 / 3,1)$
(e) $(-1,1 / 3)$

Soln: (d) When $m=-1 / 3$ the lines intersect on the x-axis. When $m=1$ the lines are parallel.
11. If $|x-1|<.1$ and $x \neq 1$ then $\left(x^{2}+3 x-4\right) /\left(x^{2}-x\right)$ must satisfy
(a) $x<0$
(b) $0 \leq x<2$
(c) $2 \leq x<4$
(d) $4 \leq x<6$
(e) $6 \leq x$

Soln: (d) Since $x \neq 1,\left(x^{2}+3 x-4\right) /\left(x^{2}-x\right)=1+4 / x$. Near $x=1$, this is near 5 .
12. Two dice are rolled; the value on each die is a random integer 1 through 6 . If x is the value on one die and y is the value on the other die, then what is the probability that $|x-y|$ is less than 2 ?
(a) $1 / 3$
(b) $1 / 2$
(c) $7 / 18$
(d) $5 / 12$
(e) $4 / 9$

Soln: (e) Count: out of $36,|x-y|=1$ for $2 \cdot 5$ of them and $x=y$ for 6 of them. 16/36=4/9.
13. Which number is the largest?
(a) 2^{48}
(b) 3^{42}
(c) 4^{30}
(d) 6^{24}
(e) 9^{18}

Soln: (b) Use that $3^{2}>2^{3} \ldots$
14. What is the largest prime factor of $2^{16}-2^{13}+2^{8}$?
(a) 5
(b) 7
(c) 11
(d) 13
(e) 17

Soln: (a) $2^{16}-2^{13}+2^{8}=2^{8}\left(2^{8}-2^{5}+1\right)=2^{8}\left(2^{4}-1\right)^{2}=2^{8}(3 \cdot 5)^{2}$.
15. If a, b are positive integers and $(a+2 b)(a-b)=27$, then $2 a+b$ is:
(a) 6
(b) 9
(c) 12
(d) 15
(e) not uniquely determined

Soln: (c) $27=1 \cdot 27=3 \cdot 9$ so either $a+2 b=27$ or 9 . Conclude $a=5, b=2$.
16. If $\triangle A B C$ is a right triangle with side $A B$ having length 3 and hypotenuse $A C$ having length 5 , then what is the length of the angle bisector $A D$ of $\angle B A C$, where D is on the side $B C$?
(a) 4
(b) $\sqrt{13}$
(c) $4 \sqrt{5} / 3$
(d) $3 \sqrt{5} / 2$
(e) $5 \sqrt{3} / 2$

Soln: (d) $\cos \theta=3 / 5$ and $\cos ^{2} \theta / 2=(1+\cos \theta) / 2=(1+3 / 5) / 2=4 / 5 . A D=3 / \cos (\theta / 2)=3 \sqrt{5} / 2$.
17. A box contains 4 balls, one each of the colors light blue, dark blue, light red, and dark red. A ball is drawn at random, returned to the box, and then a second ball is drawn at random. If at least one of the drawn balls was light blue, what is the probability that neither of the drawn balls was a shade of red?
(a) $3 / 8$
(b) $3 / 7$
(c) $2 / 7$
(d) $1 / 3$
(e) $1 / 4$

Soln: (b) Standard probability calculation...
18. If $12 x=0.12121212 \ldots$ (the digits 12 repeat indefinitely) then x equals
(a) $1 / 99$
(b) $1 / 101$
(c) 0.0099
(d) 0.011
(e) 0.012

Soln: (a) $100(12 x)-12 x=12$ so $x=1 / 99$.
19. Let N be the smallest positive integer such that if N is divided by 7 the remainder is 3 and if N is divided by 11 the remainder is 4 . The sum of the digits of N is
(a) 7
(b) 14
(c) 11
(d) 9
(e) 12

Soln: (b) $N=7 x+3=11 y+4$ for some x, y. Can just check that $N=59$ is the smallest positive such.
20. If the polynomial $x^{2}-4 x+2$ has roots r and s and the polynomial $x^{2}+b x+c$ has roots $r+1$ and $s+1$, then $b+c$ equals
(a) 1
(b) 2
(c) 3
(d) 5
(e) 7

Soln: (a) $r, s=2 \pm \sqrt{2}$ so $r+1, s+1=3 \pm \sqrt{2}$. Since $-b$ is their sum and c is their product, we get $b+c=-6+7=1$.
21. In the binomial expansion of $\left(x^{2}-y^{3}\right)^{8}$ what is the coefficient of the term $x^{a} y^{b}$ with $a-b=1$?
(a) 28
(b) -28
(c) 56
(d) -56
(e) 0

Soln: (d) Since $2 n-3(8-n)=1$ only for $n=5$, the first power of x only appears as the 5 th term of the expansion. Hence the coefficient is $(-1)^{5} \frac{8!}{5!3!}=-56$.
22. In the Cartesian plane, if a line through the point $(10,0)$ is tangent to the circle $x^{2}+y^{2}=25$ at the point (a, b) then a is
(a) $5 / 2$
(b) $5 / \sqrt{2}$
(c) $5 \sqrt{2} / 4$
(d) $5 \sqrt{3} / 2$
(e) not uniquely determined

Soln: (a) We have a right triangle in which the radius of the circle to (a, b) and a segment of the tangent line are legs. Since the ratio hypotenuse:radius $=2: 1$, the radius is at an angle $\theta=\pi / 3$. Hence $a=5 \cos \pi / 3=5 / 2$.
23. In the Cartesian plane, what is the radius of the circle that passes through the points $(0,0),(4,0)$, and $(0,-2)$?
(a) 3
(b) $7 / 3$
(c) $5 / 2$
(d) $\sqrt{7}$
(e) $\sqrt{5}$

Soln: (e) The three points are corners of a rectangle; the circle must have the same center as this rectangle: $(2,-1)$. The distance from $(0,0)$ to $(2,-1)$ is $\sqrt{5}$.
24. If m, n are positive integers and $n!=210 m$! then $m+n$ equals
(a) 8
(b) 11
(c) 12
(d) 15
(e) 21

Soln: (b) $210=7 \cdot 6 \cdot 5$ so $n=7$ and $m=4$.
25. For any real number x, let $\lfloor x\rfloor$ denote the greatest integer less than or equal to x. If $a^{2}\lfloor a\rfloor=25 / 2$ and $b\lfloor b\rfloor=10$ then $b-a$ equals
(a) $7 / 2$
(b) $11 / 4$
(c) $11 / 2$
(d) $7 / 8$
(e) $5 / 6$

Soln: (e) $a=2+\frac{1}{2}, b=3+\frac{1}{3}$.
26. The two equations $|y-x|=1$ and $y / x=x y$ have how many simultaneous solution pairs (x, y) ?
(a) 6
(b) 4
(c) 3
(d) 2
(e) 1

Soln: (b) $x=y \pm 1$ and either $y=0$ or $x^{2}=1$.
27. A sequence of 9 terms has the property that, except for the first two, each term is the sum of all the preceding terms in the sequence. If the 9 th term is 512 , then the sum of the first two terms is
(a) 4
(b) 6
(c) 8
(d) 12
(e) 16

Soln: (c). The sequence is $a, b, a+b, 2(a+b), 4(a+b), 8(a+b), 16(a+b), 32(a+b), 64(a+b)$.
28. Let $f(x)$ denote a real valued function. If $f(1+f(x))=2 f(x)$ and $f(0)=-2$ then $f(-3)$ equals
(a) -8
(b) -6
(c) -4
(d) -1
(e) 3

Soln: (a) $f(1+f(0))=2 f(0)$ so $f(-1)=-4$. Then $f(1+f(-1))=2 f(-1)$ so $f(-3)=-8$.
29. A circle of radius 1 and a square have the same center and equal areas. If the circle intersects one side of the square in points P and Q, then what is the length of the segment $P Q$?
(a) $\pi / 2$
(b) $\pi-3 / 2$
(c) $(\pi-3) / 2$
(d) $\sqrt{4-\pi}$
(e) $\frac{1}{2} \sqrt{1+\pi}$

Soln: (d) There is an isosceles triangle with sides $P Q$ and two radii. The altitude to $P Q$ has length $\sqrt{\pi} / 2$. So the length of $P Q$ squared is $4\left(1^{2}-\pi / 4\right)=4-\pi$.
30. If $\log _{2} x^{4}+\log _{x} 2=4$ then x equals
(a) $1 / 4$
(b) $\sqrt{2}$
(c) 2
(d) $1 / 2$
(e) $2 \sqrt{2}$

Soln: (b) Just check: $\sqrt{2}^{4}=4$ and $\log _{2} 4=2$. Also $\log _{\sqrt{2}} 2=2$.

