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Overview

Streams and rivers are important habitats for certain aquatic species.

The drift paradox: how stream-dwelling organisms can persist, without
being washed out, when they are continuously subject to the
unidirectional stream flow.

Instream flow needs (IFNs): the flows needed to maintain ecosystem
integrity at a particular level.

Question: How does the water flow influence population growth and
persistence?
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Overview

Models

Reaction-diffusion-advection models
( Bencala and Walters (1983), DeAngelis et al. (1995), Speirs and
Gurney (2001), Pachepsky et al. (2005), Lutscher et al (2006), etc.)

Integro-differential/difference models
(Lutscher et al (2005), Lutscher et al. (2010), etc.)

Numerical flow models coupled to population dynamical equations
(uses River2D, Steffler, Blackburn, Jin and Lewis (in prep)).

etc.
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Overview

Population spread and persistence in streams or rivers.

Spreading speeds (asymptotic speeds of spread)
Critical domain size
River metrics to provide useful ways to understand
persistence in spatially variable rivers
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The model


nt = g(x ,n)n − Q

A(x)nx + 1
A(x) (D(x)A(x)nx )x , x ∈ (0,L), t > 0,

α1n(0, t)− β1nx (0, t) = 0, t > 0,
α2n(L, t) + β2nx (L, t) = 0, t > 0,
n(x ,0) = n0(x), x ∈ (0,L),

(1)
n: the population density
g: the per capita growth rate function
A: the cross-sectional area of the stream
D: the spatially variable diffusion coefficient
Q > 0: the constant stream discharge
αi , βi : nonnegative constants (i = 1,2)
n0: the initial distribution of the population
g(x ,0) = f (x)− v(x)
f (x) > 0: spatially varying intrinsic birth rate
v(x) > 0: mortality rate
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Two typical boundary conditions

Hostile conditions (zero-flux at the stream source and zero-density at
the stream outflow:

Qn(0, t)− D(0)A(0)nx (0, t) = 0 and n(L, t) = 0. (2)

Danckwerts conditions (zero-flux at the stream source and free-flow or
insulated condition at the stream outflow:

Qn(0, t)− D(0)A(0)nx (0, t) = 0 and nx (L, t) = 0. (3)
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Linearization

The strongly elliptic linear operator

L := − Q
A(x)

∂

∂x
+

1
A(x)

∂

∂x

(
D(x)A(x)

∂

∂x

)
(4)

The linearized system of (1) at n∗ = 0 is
nt = g(x ,0)n + Ln, x ∈ (0,L), t > 0,
α1n(0, t)− β1nx (0, t) = 0, t > 0,
α2n(L, t) + β2nx (L, t) = 0, t > 0,
n(x ,0) = n0(x), x ∈ (0,L).

(5)
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The next generation operator

The next generation operator Γ : X = C[0,L]→ X

Γψ0(x) =

∫ ∞
0

f (x)ψ(x , t) dt = f (x)

∫ ∞
0

ψ(x , t) dt , (6)

where ψ(x , t), the distribution of initial individuals at t , is the solution of{
ψt = −v(x)ψ + Lψ, x ∈ (0,L), t > 0,
ψ(x ,0) = ψ0(x), x ∈ (0,L).

(7)
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The next generation operator

Alternatively,

Γψ0(x) = f (x)

∫ L

0
k(x , y)ψ0(y) dy .

k(x , y) is the solution of the ordinary boundary value problem
Lk(x , y)− v(x)k(x , y) = −δ(x − y), x ∈ (0,L)

α1k(0, y)− β1k ′(0, y) = 0
α2k(L, y) + β2k ′(L, y) = 0.

(8)

The function k(x , y) can be considered the lifetime density of space
use of an individual originally introduced at y .
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The next generation operator

The next generation operator 
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Three metrics for population persistence

1. Rloc(x0): number of offspring produced by an individual introduced
at x (dispersal excluded), distribution of a species’ fundamental niche.
(see Krkosek and Lewis (2010))

Rloc(x0) = Γ(ψ0)(x0) = f (x0)

∫ ∞
0

e−v(x0)t dt =
f (x0)

v(x0)
. (9)

0x
0 0( ) 1xψ =

0( )locR x

v

New born individuals at      
over lifetime

Point source
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Three metrics for population persistence

2. Rδ: number of offspring produced by an individual introduced at
dispersal included), realized niche. Source-sink regions? (see Krkosek
and Lewis (2010))

Rδ(x0) =

∫ L

0
Γψ0(z) dz =

∫ L

0
f (z)k(z, x0) dz,

(10)

0x

0 0( ) 1xψ =

v

0( )

( )new

R x

N x dx
δ

Ω

=

∫( )newN x

New born individuals 
at x over lifetime

Point source

x
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Three metrics for population persistence

3. R0: net reproductive rate - number of offspring produced over an
individuals lifetime, given that the individual is distributed spatially in a
manner appropriate for maximizing long-term growth. Globally persist?

R0 := r(Γ). (11)

r(Γ) is the spectral radius of the linear operator Γ.

Next generation distribution 

v
x

0 ( )xψ
Initial distribution 

0( )( )xψΓ
0

: next generation operator
: maximal eigenvalue of R

Γ
Γ
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Spectral properties of the next generation operator

1 Γ is a well-defined, bounded, compact, linear operator.
2 Krein-Rutman Theorem: R0 = r(Γ) is a simple eigenvalue and is

the dominant eigenvalue of Γ. Furthermore, R0 is the only
eigenvalue with an eigenvector that is positive on (0,L).

3 Based on Thieme (2009), R0 determines the stability of the trivial
solution.

4 Chatelin(1981): It is possible to approximate R0 numerically.

Remark:
The spectrum of Γ: σ(Γ) = {λ ∈ C |λI − Γ is not invertible}.
The spectral radius of Γ: r(Γ) = sup{ |λ| : λ ∈ σ(Γ)}.
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Preliminary theory

Theorem [Thieme (2009), Thm 3.5]. Let B be a resolvent-positive
operator in the ordered Banach space S with s(B) < 0. If C is a
positive linear operator such that A = B + C is also resolvent-positive,
then s(A) has the same sign as r(−CB−1).

Remark:
The spectral bound of T : s(T ) = sup{Re(λ) : λ ∈ σ(T )}.
The resolvent set of T : ρ(T ) = C \ σ(T ), i.e., the complement of σ(T ).
The operator T is resolvent-positive if the resolvent set ρ(T ) contains a ray
(ω,∞) and (λI − T )−1 is a positive operator for all λ > ω [Thieme 2009].
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The sign of R0 − 1

The next generation operator defined in (6) satisfies Γ = −CB−1 where
B and C are defined by

Bw(x) = Lw(x)− v(x)w(x) (12)
Cw(x) = f (x)w(x). (13)

Moreover, for
A = B + C, (14)

the spectral bound s(A) has the same sign as R0 − 1, where
R0 = r(−CB−1) = r(Γ).
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Stability of the trivial solution n∗ ≡ 0

Proposition For (1), the following statements are valid.
1 If s(A) < 0, then the trivial steady state n∗ for (1) is locally

asymptotically stable.
2 If s(A) > 0, then n∗ is unstable. Moreover, (1) admits a minimal

positive equilibrium n̂(x) and all solutions to (1) which are initially
positive on an open subset of [0,L] are eventually bounded below
by orbits which increase toward n̂ as t →∞.
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Uniform persistence when s(A) > 0

If s(A) > 0, then (1) is uniform persistent in the sense that there exists
δ > 0 such that for any solution n(x , t) of (1) with
n(x ,0) = n0 ∈ X+\{0} we have

lim inf
t→∞

min
x∈[0,L]

n(x , t) ≥ δ (15)

when the boundary conditions in (1) are Neumann or Robin conditions
and

lim inf
t→∞

max
x∈[0,L]

n(x , t) ≥ δ (16)

when at least one of the boundary conditions in (1) are Dirichlet
conditions.
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R0 determines population persistence

Theorem
Let Γ be the next generation operator defined by (6) and let R0 = r(Γ)
be the spectral radius of Γ. For the population model (1), the
homogeneous trivial steady state solution n∗ ≡ 0 is locally
asymptotically stable when R0 < 1 and unstable when R0 > 1.
Moreover, if R0 > 1, then the population is uniformly persistent.

Yu Jin (UNL) River metrics 20 / 25



A numerical example

Net Reproductive Rate

Yu Jin (UNL) River metrics 21 / 25



A numerical example
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The extensions of the work

Metrics of the two-dimensional version of the model
Metrics of a benthic-drift model in a one-dimensional river
Metrics of a benthic-drift model in a two-dimensional river
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Thank you!
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