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A parabolic problem 

Analyzing the dynamics of the positive solutions of  

 

𝜕𝑡 u = Δ u + λ u + a(x) 𝑢𝑝         in        Ω,     t > 0,  

u = M                                          on     𝜕Ω,     t > 0,  

u(x,0)=𝑢0(x)                               if    x ϵ Ω.                                

 

where Ω  ⊂ ℝ𝑛  is smooth and bounded, 𝑀 > 0, 𝑢0 > 0,   
λ < 0  and   𝑝 > 1.  

 

Polluted lanscape is measured by λ < 0 and 𝑴 > 𝟎 
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Nodal behavior of   𝑎 𝑥  

 

• 𝑎 𝑥 > 0   if   𝑥 ∈   Ω+  with   Ω+⋐ Ω, 

 

• 𝑎 𝑥 < 0   if   𝑥 ∈   Ω− =Ω - Ω+ 

 

In a neighborhood of  ∂Ω  the problem is 
sublinear, while it is superlinear in  𝜴+.  
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A paradigmatic example  
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Structure of the talk  

1. Analysis of the one-dimensional model.  

2. Global bifurcation diagrams using  b  as the   

     main parameter for  λ → −∞. 

3. Numerical computations of the global  

     bifurcation diagrams. Strong squashing  

     effects for    𝝀 → − ∞.  

4. Uniqueness of the stable solution …   
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1. The one-dimensional model  

Analysis of the sublinear problems in the 
intervals [𝟎, 𝜶] and 𝟏 − 𝜶, 𝟏 , i.e.,  

             

            −𝑢′′ =  λ𝑢 − 𝑐𝑢𝑝         in  𝟎, 𝜶 , 
𝑢 0 = 𝑀,  𝑢′ 0 = 𝑣 ∈  ℝ, 

and  

          −𝑢′′ =  λ𝑢 − 𝑐𝑢𝑝         in  𝟏 − 𝜶, 𝟏 ,
             𝑢 1 = 𝑀,           𝑢′ 1 =  𝑣 ∈  ℝ. 
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The set reached at time 𝛼 

Let   𝒗∗   denote the unique value of   𝑣  for 
which   𝒖 𝜶 = 𝟎. 

Let   𝒗∗  denote the unique value of   𝑣   for 
which   𝒖 𝜶 = ∞.   

Then, we  consider the curves of ℝ+ ×  ℝ 

          ℾ0={ 𝑢 α , 𝑢′ α  ∶    𝑣 ∈  𝑣∗ , 𝑣∗  }  

and 

  ℾ1={ 𝑢 1 − 𝛼 , 𝑢′ 1 − 𝛼 ∶ 𝑣 ∈ −  𝑣∗ , 𝑣∗  } 
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ℾ1={ 𝑢, −𝑣 ∶   𝑢, 𝑣 ∈  ℾ0} 
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The special case 𝑏 = 𝑏∗=-λ/𝑚0
𝑝−1 
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Multiplicity result     (τΩ=
2π

λ(1−𝑝)
)  
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The Poincaré maps for   𝑏 = 𝑏∗ 

 

• 𝝉𝟏(𝒙)  is the minimal time needed to reach    
ℾ𝟏   starting at    (𝒙, 𝒚 𝒙 ) ∈ ℾ𝟎. 

 

• 𝝉𝟐𝒏+𝟏 = 𝝉𝟏 + 𝒏𝝉,     𝝉𝟐𝒏 =  𝝉𝟏 + 𝒏 − 𝟏 𝝉. 

 

• 𝝉 𝒙   stands for the period of the solution 
starting at     (𝒙, 𝒚 𝒙 ) ∈ ℾ𝟎. 
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Graphs of the Poincaré maps 
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Perturbed Poincaré maps for 𝑏 ≠ 𝑏∗ 

𝒃 < 𝒃∗ 𝒃∗ < 𝒃 
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2. Global bifurcation diagrams in  𝑏 

        𝝉𝟏(Ω) < 1 - 2𝜶 < 𝝉𝟐(Ω) 𝝉𝟐 Ω < 𝟏 − 𝟐𝜶 < 𝝉(Ω) 
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Emergence of loops and torsions 

𝝉 Ω < 𝟏 − 𝟐α < 𝝉𝟑(Ω) 𝝉𝟑 Ω < 𝟏 − 𝟐𝜶 < 𝝉𝟒(Ω) 
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Secondary loops 
𝝉𝟒 Ω < 𝟏 − 𝟐𝜶 < 𝟐𝝉 Ω  

 

𝟐𝝉 Ω < 𝟏 − 𝟐𝜶 < 𝝉𝟓(Ω) 
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Secondary torsion  
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3. Computing the bifurcation diagrams 

• Discretization through spectral methods 
coupled with collocation  

 

• Global continuation through local and global 
path-following solvers. Stability  

 

• Strong squashing effects as   𝝀 → −∞ 
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𝒑 = 𝟐; 𝑴 = 𝟏𝟎𝟎; 𝒄 = 𝟏; 𝜶 = 𝟎. 𝟑  

Diagram for λ = −𝟓  Some solutions along it  
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Bifurcation diagram for λ = −70 
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Symmetry breaking: The first loop  
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Bifurcation diagram for λ = −300  
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Asymmetric perturbation of  𝑎(𝑥) 
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Two solution components  
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A family of isolas shrinking to a point  
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4. The general problem 

(a) The problem does not admit a positive  
      steady-state for sufficiently large 𝒃 > 𝟎.  
  
(b) The minimal positive steady-state is the  
      unique stable  steady-state.  
 
(c) In the presence of a priori bounds, the   
      model possesses at least two solutions,  
      except  at the maximal value of   𝒃. 
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Stable and unstable solutions 

30 



Conclusions 

• The more polluted is the habitat, measured 
by the size of 𝝀 , the larger is the complexity 
of the dynamics. 

 

• The more polluted is the habitat, the stronger 
are  the squashing effects.  

 

• In all circumstances, the unique stable 
steady-state is the minimal one.   
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