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Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous
environment:

Ut = d1∆U + U(a1 − b1U − c1V ) in Ω× (0,T )
Vt = d2∆V + V (a2 − b2U − c2V ) in Ω× (0,T )
∂νU = ∂νV = 0 on ∂Ω× (0,T )

ai : carrying capacity/intrinsic growth rate;
b1, c2: intra-specific competition;
b2, c1: inter-specific competition
are all positive constants
Weak competition: b1

b2
> a1

a2
> c1

c2
.
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Weak competition: b1
b2
> a1

a2
> c1

c2

Four constant steady states: (0,0), (a1
b1
,0), (0, a2

c2
), and

(U∗,V ∗) = (a1c2−a2c1
b1c2−b2c1

, b1a2−b2a1
b1c2−b2c1

)

Fact: (U∗,V ∗) is globally asymp stable in [U > 0,V > 0].
(In particular, U and V will always co-exist!)
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Weak Competition in Heterogeneous Environment

Consider
Ut = d1∆U + U(m1(x)− b1U − c1V ) in Ω× (0,T )
Vt = d2∆V + V (m2(x)− b2U − c2V ) in Ω× (0,T )
∂νU = ∂νV = 0 on ∂Ω× (0,T )
U(x ,0) = U0(x) ≥ 0,V (x ,0) = V0(x) ≥ 0 in Ω

where mi(x) ≥ 0, i = 1,2, nonconstant, and U0 6≡ 0,V0 6≡ 0.

Likewise we’ll focus on the ”weak-competition” case, i.e.

b1

b2
>

m1(x)

m2(x)
>

c1

c2
for all x ∈ Ω.
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Heterogeneous Environment

Both d1,d2 large⇒ ∃! s.s. which is globally asymp. stable, and
tends to

(
m1c2−m2c1
b1c2−b2c1

, b1m2−m1b2
b1c2−b2c1

)
as d1,d2 →∞, where

mi = 1
|Ω|
∫

Ω mi(x)dx . [Lou, private communication]

Both d1,d2 small ⇒ Similarly, ∃! s.s. which is globally asymp.
stable and tends to

(
m1(x)c2−m2(x)c1

b1c2−b2c1
, b1m2(x)−m1(x)b2

b1c2−b2c1

)
, x ∈ Ω, as

d1,d2 → 0. [Hutson, Lou and Mischaikow, JDE (2005)]
So far, the situation seems similar to that of the constant
coefficients case.
However, the remaining case, namely, when d1,d2 are not very
small nor very large, is drastically different from its counter part in
the constant coefficients case.
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Single Equation in Heterogeneous Environment
(I) In a heterogeneous environment m(x) ≥ 0, nonconstant{

ut = d∆u + u(m(x)− u) in Ω× (0,T ),
∂νu = 0 on ∂Ω× (0,T ).

Fact: For every d > 0, ∃ unique positive s.s. denoted by θd ,m.
Moreover, θd ,m is globally asymp stable.

(II) To handle co-existence for competitions, need to consider for h(x)
changes sign{

ut = d∆u + u(h(x)− u) in Ω× (0,T ),
∂νu = 0 on ∂Ω× (0,T ).

Facts: (i) If
∫

Ω h(x) ≥ 0, then ∀d > 0, ∃ unique positive s.s. denoted by
θd ,h. Moreover, θd ,h is globally asymp stable.
(ii) If

∫
Ω h(x) < 0, then the same conclusion in (i) holds for all

0 < d < 1/λ1(h), where λ1(h) is the nonzero principal eigenvalue of
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Principal Eigenvalue
{

∆ϕ+ λh(x)ϕ = 0 in Ω,

∂νϕ = 0 on ∂Ω,

where h 6≡ const , could change sign in Ω. λ is a principal eigenvalue if
there is a positive solution. (Note: 0 is always a principal eigenvalue.)

Lemma
The problem has a nonzero principal eigenvalue λ1 = λ1(h) iff h
changes sign and

∫
Ω h 6= 0. More precisely, if h changes sign, then

1
∫

Ω h = 0⇔ 0 is the only principal eigenvalue.
2
∫

Ω h > 0⇔ λ1(h) < 0.
3
∫

Ω h < 0⇔ λ1(h) > 0.
4 λ1(h1) > λ1(h2) if h1 ≤ h2, h1 6≡ h2, and h1,h2 both change sign.
5 λ1(h) is continuous in h; i.e. λ1(h`)→ λ1(h) if h` → h in L∞(Ω).
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(III) [Lou; JDE (2006]:
∫

Ω θd ,m >
∫

Ω m(x) ∀d > 0

i.e. the total population is always strictly greater than the total carrying
capacity!

For

0 = d
∫

Ω

|∇θd ,m|2

θ2
d ,m

+

∫
Ω

m −
∫

Ω
θd ,m

Moreover,
∫

Ω θd ,m →
∫

Ω m(x) as d → 0 or∞, since

θd ,m →

{
m as d → 0,
m := 1

|Ω|
∫

Ω m as d →∞.

Open: What is the value
maxd>0

∫
Ω θd ,m? Where is

maxd>0
∫

Ω θd ,m assumed?
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Competition in Heterogeneous Environment
Consider special case m1 ≡ m2:

d1∆U + U(m(x)− U − cV ) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

(Here, assume b1 = c2 = 1 by rescaling.)

Theorem (Lou; JDE (2006))
Suppose m1(x) = m2(x) ≥ 0. Then ∀b ∈ (b∗,1), there exists c ∈ (0,1]
small such that if c ∈ (0, c), (θd1 ,0) is globally asymp stable for some

d1 < d2, where b∗ = inf
d>0

∫
Ω

m
/∫

Ω
θd .

In particular, for some 0 < b, c < 1 and d1,d2, U will wipe out V , and
co-existence is no longer possible even when the competition is weak!
A remarkable theorem!

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 9 / 26



Competition in Heterogeneous Environment
Consider special case m1 ≡ m2:

d1∆U + U(m(x)− U − cV ) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

(Here, assume b1 = c2 = 1 by rescaling.)

Theorem (Lou; JDE (2006))
Suppose m1(x) = m2(x) ≥ 0. Then ∀b ∈ (b∗,1), there exists c ∈ (0,1]
small such that if c ∈ (0, c), (θd1 ,0) is globally asymp stable for some

d1 < d2, where b∗ = inf
d>0

∫
Ω

m
/∫

Ω
θd .

In particular, for some 0 < b, c < 1 and d1,d2, U will wipe out V , and
co-existence is no longer possible even when the competition is weak!
A remarkable theorem!

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 9 / 26



Competition in Heterogeneous Environment
Consider special case m1 ≡ m2:

d1∆U + U(m(x)− U − cV ) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

(Here, assume b1 = c2 = 1 by rescaling.)

Theorem (Lou; JDE (2006))
Suppose m1(x) = m2(x) ≥ 0. Then ∀b ∈ (b∗,1), there exists c ∈ (0,1]
small such that if c ∈ (0, c), (θd1 ,0) is globally asymp stable for some

d1 < d2, where b∗ = inf
d>0

∫
Ω

m
/∫

Ω
θd .

In particular, for some 0 < b, c < 1 and d1,d2, U will wipe out V , and
co-existence is no longer possible even when the competition is weak!
A remarkable theorem!

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 9 / 26



In fact, [Lou; JDE (2006)] gives more detailed information:

b < b∗ ⇒ (θd1 ,0) unstable (regardless of d1,d2, c)

b > b∗ ⇒ (θd1 ,0) stable for d1 ∈ (d ,d) and d2 > 1/λ1(m − bθd1)

b > b∗, c small, for above d1,d2 ⇒ no co-existence
(0, θd2) unstable if d1 < d2 (indep of b, c)
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Complete Dynamics: d1 ≤ d2,0 < b < 1, c small
d1∆U + U(m(x)− U − cV ) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

[Lou; JDE (2006)]: For all (d1,d2) ∈ Σb and for c small, (θd1 ,0) is
globally asymp stable where

Σb = {(d1,d2) ∈ R+ × R+ : (θd1 ,0) is linearly stable}
Note: Σb = {(d1,d2) ∈ R+ ×R+ : d2 > 1/λ1(d2,m− bθd1) > 0} ⊂ Q ≡
{(d1,d2) ∈ R+ ×R+ : d1 < d2} is indep of c, and non-empty for b > b∗.

Theorem (Lam and Ni; SIAP Vol. 72 No. 6 (2012))
There exists 0 < c∗ < 1 s.t. for all 0 < c < c∗, and 0 < b < 1
(i) (θd1 ,0) is globally asymp stable for all (d1,d2) ∈ Σb;
(ii) for any (d1,d2) ∈ Q \ Σb with d1 ≤ d2, ∃ a unique co-existence s.s.
which is globally asymp stable.

Note: c∗ is uniform in (indep of) b ∈ (0,1).
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Complete Dynamics

d1 ≤ d2,b > b∗, c small, Σb (the region, including its boundary,
where U always wipes out V regardless of initial values) is colored
in red
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Proof (Sketch)

Strategy (Lou): From monotone flow theory, suffices to show:
∃c∗ ∈ [0,1] s.t. ∀c ∈ [0, c∗],b ∈ [0,1],d1 ≤ d2, every co-existence s.s.
(if exists) is linearly stable.
Prove by contradiction: Assume ∃ a seq bk → b ∈ [0,1], ck → 0,
d1,k ≤ d2,k → d1 ≤ d2, s.t. ∃ co-existence s.s. (Uk ,Vk )→ (U,V ) for
which the linearized eigenvalue λk ≤ 0. Then the limit satisfies

d1∆U + U(m(x)− U) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

and therefore

U =


m if d1 = 0,
θd1,m if 0 < d1 <∞,
m if d1 =∞

V =


(1− b)m if d2 = 0,
θd2,m−bU if 0 < d2 <∞,
m − bU if d2 =∞.
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Proof (Sketch)
Consider the cases
(A) d1 → 0, d2 → 0.
(B) d1 → 0, d2 → d2,∞ ∈ (0,∞].
(C) d1 →∞, d2 →∞.
(D) For some d ∈ R+, d1 → d , d2 → d .
(E) d1 → d1,∞ ∈ R+ and d2 →∞.
(F) b∞ < 1 and d1 → d1,∞, d2 → d2,∞ for some (d1,∞,d2,∞) ∈ ∂Σb∞ .
(G) b∞ < 1 and d1 → d1,∞, d2 → d2,∞ for some (d1,∞,d2,∞) 6∈ ∂Σb∞ .

When bk → 1⇒ Vk → 0 in some cases. Then, we use
Vk/‖Vk‖L∞ → V∞ > 0 instead.
Krein-Rutman⇒ Φk > 0 > Ψk where (Φk ,Ψk ) is linearized
principal eigenfunction

d1∆Φ + (m − 2U − cV )Φ− cUΨ + λΦ = 0 in Ω,
d2∆Ψ + (m − bU − 2V )Ψ− bV Φ + λΨ = 0 in Ω,
∂νΦ = ∂νΨ = 0 on ∂Ω.
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Proof (Sketch)

Now λk ≤ 0⇒ either |Φk | < |Ψk | pointwise or |Φk |L2 ≤ ε|Ψk |L2

depending on the various cases above.

With the precise limit of (Uk ,Vk ) and above estimates on (Φk ,Ψk )
plus again λk ≤ 0, we can deduce a contradiction from the
linearized eigenvalue system.

For instance, consider the case (A) when both d1,d2 → 0:∫
Ω

[
−d2|∇Ψ|2 + (m − bU − V )Ψ2

]
−
∫

Ω
(bV ΦΨ+V Ψ2)+λ

∫
Ω

Ψ2 = 0.

To get a contradiction, suffices to show∫
Ω

(b
V

‖V‖L∞(Ω)
ΦΨ +

V
‖V‖L∞(Ω)

Ψ2) > 0,

which follows from Φ + Ψ < 0.
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Proof (Sketch)
To see that Φ + Ψ < 0, suffices to show (by max principle){

d1∆(Φ + Ψ) + (m − 2U − cV + λ)(Φ + Ψ) > 0 in Ω,
∂ν(Φ + Ψ) ≤ 0 on ∂Ω,

which is equivalent to

d1∆(−Ψ) + (m − 2U − cV + λ)(−Ψ)− cUΨ

=
d1

d2
[−bV Φ + (m − bU − 2V )Ψ + λΨ]− (m − 2U − cV + λ)Ψ− cUΨ

= −d1

d2
bV Φ− λ

(
1− d1

d2

)
Ψ

+

[
d1

d2
(m − bU − 2V )− (m − 2U − cV )− cU

]
Ψ < 0

since U → m, V → (1− b∞)m, 0 < d1 ≤ d2 and c ↘ 0, the terms in

the square bracket converge to
[
1− d1

d2
(1− b∞)

]
m > 0 in Ω̄, while

the first two terms are non-positive.
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Proof (Sketch)
Another important ingredient in our proof: Given d > 0, h ∈ L∞(Ω)
may change sign, let µ1(d ,h) be 1st eigenvalue of{

d∆ψ + hψ + µψ = 0 in Ω,
∂νψ = 0 on ∂Ω.

Rk: µ1(d ,h) = 0⇔ d = 1/λ1(h).

Proposition
Let µ1(dk ,hk ) < 0 for all k (i.e. θk := θdk ,hk > 0 exists) where
hk ∈ C(Ω̄) and dk > 0 and lim

k→∞
hk = h∞ in C(Ω̄). Then

(a) if dk → 0, then θk → max{h∞,0} in L∞(Ω);
(b) if dk →∞, then θk → h∞ and θ̃k := θk/‖θk‖L∞(Ω) → 1 in L∞(Ω);

(c) if dk → d∞ ∈ R+, then µ1(d∞,h∞) ≤ 0. Moreover,
(i) if µ1(d∞,h∞) = 0, then θk → 0 and θk/‖θk‖L∞(Ω) → ψ1 in L∞(Ω),

where ψ1 is the 1st eigenfcn (normalized) corresp to µ1(d∞,h∞).
(ii) if µ1(d∞,h∞) < 0, then θk → θd∞,h∞ .
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Progress: For 0 ≤ c ≤ 1 [Lam and Ni: SIAP (2012)]
Consider 

d1∆U + U(m(x)− U − cV ) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

(I) For any ε, ∃δ(ε) > 0 s.t. for 1− δ < b < 1, 0 ≤ c ≤ 1, ε < d1 < 1/ε
and d2 ≥ d1 + ε, (θd1 ,0) is globally asymp. stable.

Remark: Interesting that c could be even bigger than b in (I).

(II) For 0 < b, c < 1, ∃ε > 0 s.t. if |d1 − d2| < ε then ∃ unique positive
s.s. (Ũ, Ṽ ). Moreover, (Ũ, Ṽ ) is globally asymp. stable; and if
d1,d2 → d > 0, then

(Ũ, Ṽ )→ 1
1− bc

(
1− c
1− b

)
θd .
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Local stability of (θd1,0): b > b∗,0 ≤ c ≤ 1

Now we vary b as a parameter. Then for any c ∈ [0,1], Lou obtained
the following picture: (the regions shaded yellow represent the (d1,d2)
for which (θd1 ,0) is locally asymp. stable.)

As b ↗ 1,Σb ↗ Q ≡ {(d1,d2) ∈ R+ × R+ : d1 < d2}
For (d1,d2) ∈ Q \ Σb (i.e. white area in the upper triangular
region), there is at least one locally stable co-existence s. s.
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Globally Stable Coexistence S.S.: b > b∗,0 ≤ c ≤ 1
The regions shaded blue represent the (d1,d2) for which there exists a
unique coexistence s.s. which is globally asymp. stable.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 20 / 26



Globally Stable Coexistence S.S.: b > b∗,0 ≤ c ≤ 1
The region shaded blue represent the (d1,d2) for which there exists a
unique coexistence s.s. which is globally asymp. stable.)
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Globally Stable Coexistence S.S.: b > b∗,0 ≤ c ≤ 1
The region shaded blue represent the (d1,d2) for which there exists a
unique coexistence s.s. which is globally asymp. stable.)
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Sketch of the proofs
(I) For 0 < d1 < d2, ∃δ > 0 s.t. for 1− δ < b < 1 and 0 ≤ c ≤ 1, (θd1 ,0)
is globally asymp. stable.

(A simpler version)

Fix d1 < d2, c ∈ [0,1], let bk → 1 and (Uk ,Vk ) be coexistence s.s.
Then by compactness of (Uk ,Vk ) in C2,α × C2,α, and the
non-existence result when b = 1, we must have (Uk ,Vk )→ one of
S = {(θd1 ,0), (0, θd2) or (0,0)}.
However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.
(Given each semitrivial/trivial solution, there exists a neighborhood
independent of bk so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)
Therefore, we must have (Uk ,Vk ) ∈ S for all k large. Contradicting
the assumption that (Uk ,Vk ) is a coexistence s.s.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 23 / 26



Sketch of the proofs
(I) For 0 < d1 < d2, ∃δ > 0 s.t. for 1− δ < b < 1 and 0 ≤ c ≤ 1, (θd1 ,0)
is globally asymp. stable. (A simpler version)

Fix d1 < d2, c ∈ [0,1], let bk → 1 and (Uk ,Vk ) be coexistence s.s.
Then by compactness of (Uk ,Vk ) in C2,α × C2,α, and the
non-existence result when b = 1, we must have (Uk ,Vk )→ one of
S = {(θd1 ,0), (0, θd2) or (0,0)}.
However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.
(Given each semitrivial/trivial solution, there exists a neighborhood
independent of bk so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)
Therefore, we must have (Uk ,Vk ) ∈ S for all k large. Contradicting
the assumption that (Uk ,Vk ) is a coexistence s.s.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 23 / 26



Sketch of the proofs
(I) For 0 < d1 < d2, ∃δ > 0 s.t. for 1− δ < b < 1 and 0 ≤ c ≤ 1, (θd1 ,0)
is globally asymp. stable. (A simpler version)

Fix d1 < d2, c ∈ [0,1], let bk → 1 and (Uk ,Vk ) be coexistence s.s.

Then by compactness of (Uk ,Vk ) in C2,α × C2,α, and the
non-existence result when b = 1, we must have (Uk ,Vk )→ one of
S = {(θd1 ,0), (0, θd2) or (0,0)}.
However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.
(Given each semitrivial/trivial solution, there exists a neighborhood
independent of bk so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)
Therefore, we must have (Uk ,Vk ) ∈ S for all k large. Contradicting
the assumption that (Uk ,Vk ) is a coexistence s.s.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 23 / 26



Sketch of the proofs
(I) For 0 < d1 < d2, ∃δ > 0 s.t. for 1− δ < b < 1 and 0 ≤ c ≤ 1, (θd1 ,0)
is globally asymp. stable. (A simpler version)

Fix d1 < d2, c ∈ [0,1], let bk → 1 and (Uk ,Vk ) be coexistence s.s.
Then by compactness of (Uk ,Vk ) in C2,α × C2,α, and the
non-existence result when b = 1, we must have (Uk ,Vk )→ one of
S = {(θd1 ,0), (0, θd2) or (0,0)}.

However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.
(Given each semitrivial/trivial solution, there exists a neighborhood
independent of bk so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)
Therefore, we must have (Uk ,Vk ) ∈ S for all k large. Contradicting
the assumption that (Uk ,Vk ) is a coexistence s.s.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 23 / 26



Sketch of the proofs
(I) For 0 < d1 < d2, ∃δ > 0 s.t. for 1− δ < b < 1 and 0 ≤ c ≤ 1, (θd1 ,0)
is globally asymp. stable. (A simpler version)

Fix d1 < d2, c ∈ [0,1], let bk → 1 and (Uk ,Vk ) be coexistence s.s.
Then by compactness of (Uk ,Vk ) in C2,α × C2,α, and the
non-existence result when b = 1, we must have (Uk ,Vk )→ one of
S = {(θd1 ,0), (0, θd2) or (0,0)}.
However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.

(Given each semitrivial/trivial solution, there exists a neighborhood
independent of bk so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)
Therefore, we must have (Uk ,Vk ) ∈ S for all k large. Contradicting
the assumption that (Uk ,Vk ) is a coexistence s.s.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 23 / 26



Sketch of the proofs
(I) For 0 < d1 < d2, ∃δ > 0 s.t. for 1− δ < b < 1 and 0 ≤ c ≤ 1, (θd1 ,0)
is globally asymp. stable. (A simpler version)

Fix d1 < d2, c ∈ [0,1], let bk → 1 and (Uk ,Vk ) be coexistence s.s.
Then by compactness of (Uk ,Vk ) in C2,α × C2,α, and the
non-existence result when b = 1, we must have (Uk ,Vk )→ one of
S = {(θd1 ,0), (0, θd2) or (0,0)}.
However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.
(Given each semitrivial/trivial solution, there exists a neighborhood
independent of bk so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)

Therefore, we must have (Uk ,Vk ) ∈ S for all k large. Contradicting
the assumption that (Uk ,Vk ) is a coexistence s.s.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 23 / 26



Sketch of the proofs
(I) For 0 < d1 < d2, ∃δ > 0 s.t. for 1− δ < b < 1 and 0 ≤ c ≤ 1, (θd1 ,0)
is globally asymp. stable. (A simpler version)

Fix d1 < d2, c ∈ [0,1], let bk → 1 and (Uk ,Vk ) be coexistence s.s.
Then by compactness of (Uk ,Vk ) in C2,α × C2,α, and the
non-existence result when b = 1, we must have (Uk ,Vk )→ one of
S = {(θd1 ,0), (0, θd2) or (0,0)}.
However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.
(Given each semitrivial/trivial solution, there exists a neighborhood
independent of bk so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)
Therefore, we must have (Uk ,Vk ) ∈ S for all k large. Contradicting
the assumption that (Uk ,Vk ) is a coexistence s.s.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 23 / 26



Sketch of the proofs

(II) For 0 < b, c < 1, ∃ε > 0 s.t. if |d1 − d2| < ε then ∃ unique positive
s.s. (Ũ, Ṽ ). Moreover, (Ũ, Ṽ ) is globally asymp. stable; and if
d1,d2 → d > 0, then

(Ũ, Ṽ )→ 1
1− bc

(
1− c
1− b

)
θd .

Set d1 = d2 = d and fix b, c ∈ (0,1).

Observe that 1
1−bc

(
1− c
1− b

)
θd is a solution.

Show that if (U0,V0) is a solution, then necessarily
(1− b)U0 = (1− c)V0.

Now perturb d1 and d2 in the same way as in the proof of (I).
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Slower diffuser always prevails?
Consider a special case

Ut = d1∆U + U(m(x)− U − bV ) in Ω× (0,T )
Vt = d2∆V + V (m(x)− bU − V ) in Ω× (0,T )
∂νU = ∂νV = 0 on ∂Ω× (0,T )
U(x ,0) = U0(x) ≥ 0,V (x ,0) = V0(x) ≥ 0 in Ω

where b = 1− δ close to 1. [Lam-Ni] indicates, U does not seem to
fare better as d1 decreases from d2 to 0.
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Conjecture

Finally,

Conjecture [Lou; JDE (2006)]: (θd1 ,0) is globally asymp stable for
b > b∗, c ∈ (0,1) and (d1,d2) ∈ Σb.
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