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Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous
environment:

Vi=dbAV + V(ag—bQU—CQV) in Q x (0, T)

Uy =adiAU + U(a1 —b1U—C1V) in Q x (0, T)
9,U=08,V=0 on 9Q x (0, T)
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Lotka-Volterra competition-diffusion system in homogeneous
environment:

Vi=dbAV + V(ag—b2U—02V) in Q x (0, T)
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Lotka-Volterra competition-diffusion system in homogeneous
environment:

Vi=dbAV + V(ag—b2U—02V) in Q x (0, T)

Uy =adiAU + U(a1 —b1U—C1V) in Q x (0, T)
o,U=08,V=0 on 9Q x (0, T)

@ a;: carrying capacity/intrinsic growth rate;
@ by, ¢o: intra-specific competition;
@ by, cq: inter-specific competition
are all positive constants
@ Weak competition:
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Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous
environment:

Vi=dbAV + V(ag—b2U—02V) in Q x (0, T)

Uy =adiAU + U(a1 —b1U—C1V) in Q x (0, T)
o,U=08,V=0 on 9Q x (0, T)

@ a;: carrying capacity/intrinsic growth rate;
@ by, ¢o: intra-specific competition;
@ by, cq: inter-specific competition
are all positive constants
a

ition: P> @ < G
@ Weak competition: by~ a > G
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ition- oL a &
Weak competition: g8 > gt > !
Four constant steady states: (0,0), (5!, 0), (0, 2), and
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Weak competition: 2 > 2 > &

Four constant steady states: (0, O), (b—1, 0), (0, i—i), and

- biap—b
V) = (G hake

AN
. j(U*,V*)
7R
Na
Flg.lbl

Fact: (U*, V*) is globally asymp stable in [U > 0, V > Q].
(In particular, U and V will always co-exist!)
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Weak Competition in Heterogeneous Environment

Consider
Ut = di AU+ U(my(x) — byU — ¢y V) inQx(0,T)
Vi = dbAV + V(mg(X)—bQU—CQV) ian(O, T)
ouU=0,V=0 on 92 x (0, T)

U(x,0) = Up(x) > 0, V(x,0) = Vo(x) >0 inQ

where m;(x) > 0,i = 1,2, nonconstant, and U # 0, Vj # 0.
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Weak Competition in Heterogeneous Environment

Consider
Ut = di AU+ U(my(x) — byU — ¢y V) inQx(0,T)
Vi = dbAV + V(mg(X)—bQU—CQV) ian(O, T)
,U=0,V=0 on 92 x (0, T)

U(x,0) = Up(x) >0, V(x,0) = Wo(x) >0 inQ
where m;j(x) > 0,i = 1,2, nonconstant, and U # 0, Vy # 0.

Likewise we’ll focus on the "weak-competition” case, i.e.

by m(x) > & for all x € Q.
b2 mg(X) Co
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Heterogeneous Environment

@ Both dy, db large = 3! s.s. which is globally asymp. stable, and

MiCo—Mpcy bimp—miby
tends to ( bree—brs > Brco—bye, ) as dy, do — oo, where

m; = ﬂﬁ' Jo mi(x)dx. [Lou, private communication]
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Heterogeneous Environment

@ Both dy, d» large = 3! s.s. which is globally asymp. stable, and

miCo—Mmpcy byma—miby
tends to ( bree—brs > Brco—bye, ) as dy, do — oo, where

m = |1ﬁ| Jo mi(x)dx. [Lou, private communication]

@ Both dy, d> small = Similarly, 3! s.s. which is globally asymp.

stable and tends to (m‘ (21)2:2220(1)()0‘ o ’"gff,ﬁ:;";éf“’z X €Q, as

di, d> — 0. [Hutson, Lou and Mischaikow, JDE (2005)]
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Heterogeneous Environment

@ Both dy, d» large = 3! s.s. which is globally asymp. stable, and

mico—mocy bymy—myby
tends to ( bree—brs > Brco—bye, ) as dy, db — oo, where

m; = g Jo Mi(x)dx. [Lou, private communication]
@ Both dy, d> small = Similarly, 3! s.s. which is globally asymp.
stable and tends to (m‘ ()c—ma(xjer bimp(X)—m()be ) ' c ) ag

bico—bocy ’ bico—bocy

di, d> — 0. [Hutson, Lou and Mischaikow, JDE (2005)]

@ So far, the situation seems similar to that of the constant
coefficients case.
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Heterogeneous Environment

Both dy, d» large = 3! s.s. which is globally asymp. stable, and

miCo—Mmpcy byma—miby
tends to ( bree—brs > Brco—bye, ) as dy, db — oo, where

m; = g Jo Mi(x)dx. [Lou, private communication]

Both dy, d> small = Similarly, 3! s.s. which is globally asymp.
stable and tends to (m‘ (gfﬁzif,":c(f)c‘ & mf,f)éz):g‘éx)bz X €Q,as
di, d> — 0. [Hutson, Lou and Mischaikow, JDE (2005)]
So far, the situation seems similar to that of the constant
coefficients case.

However, the remaining case, namely, when d;, d» are not very
small nor very large, is drastically different from its counter part in
the constant coefficients case.
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Single Equation in Heterogeneous Environment
() In a heterogeneous environment m(x) > 0, nonconstant

ur=dAu+u(m(x) —u) inQx(0,T),
ou=20 on 9Q x (0, T).
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Fact: For every d > 0, 3 unique positive s.s. denoted by 0 m.
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Single Equation in Heterogeneous Environment
() In a heterogeneous environment m(x) > 0, nonconstant

ur=dAu+u(m(x) —u) inQx(0,T),
ou=20 on 9Q x (0, T).

Fact: For every d > 0, 3 unique positive s.s. denoted by 0 m.
Moreover, 04 m is globally asymp stable.

() To handle co-existence for competitions, need to consider for h(x)
changes sign

ur=dAu+u(h(x)—u) inQx(0,T),
ou=20 on 9 x (0, T).

Facts: (i) If [, h(x) > 0, then¥d > 0, 3 unique positive s.s. denoted by
0q.n. Moreover, 9d,h is globally asymp stable.
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Single Equation in Heterogeneous Environment
() In a heterogeneous environment m(x) > 0, nonconstant

ur=dAu+u(m(x) —u) inQx(0,T),
ou=20 on 9Q x (0, T).

Fact: For every d > 0, 3 unique positive s.s. denoted by 0 m.
Moreover, 04 m is globally asymp stable.

() To handle co-existence for competitions, need to consider for h(x)
changes sign

ur=dAu+u(h(x)—u) inQx(0,T),
{ ou=20 on 9 x (0, T).
Facts: (i) If [, h(x) > 0, then¥d > 0, 3 unique positive s.s. denoted by
O h- Moreover 9d n s globally asymp stable.
(ii) If [ h(x) < 0, then the same conclusion in (i) holds for all
0<d<1 / A (h), where \{(h) is the nonzero principal eigenvalue of
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Principal Eigenvalue

Ap+ M A(X)p =0  inQ,
Op=0 on 99,

where h # const, could change sign in Q. \ is a principal eigenvalue if
there is a positive solution. (Note: 0 is always a principal eigenvalue.)
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Principal Eigenvalue

Ovp =0 on 99,

where h # const, could change sign in Q. \ is a principal eigenvalue if
there is a positive solution. (Note: 0 is always a principal eigenvalue.)

{Ag@ +A(X)p=0  inQ,

Lemma

The problem has a nonzero principal eigenvalue \y = A\ (h) iff h
changes sign and [, h # 0. More precisely, if h changes sign, then

Q@ J,h=0<« 0isthe only principal eigenvalue.

Q@ /,h>0s X(h)<O.

Q@ /,h<0& A(h)>0.

o A (h1) > A (hg) ifhy < ho, hy 7‘é ho, and hy ; ho both change sign.
@ )\ (h) is continuous in h; i.e. \1(hy) — X1(h) if hy — hin L°(Q).
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(1) [Lou; JDE (2006]: Jobam> Jgm(x) Vd>0

i.e. the total population is always strictly greater than the total carrying
capacity!
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(1) [Lou; JDE (2006]: Jobam> Jgm(x) Vd>0

i.e. the total population is always strictly greater than the total carrying
capacity!  For

9 2

Moreover, [, 04m — Jo M(x) as d — 0 or oo, since
9 m asd — 0,
— —
d,m m:=y Jom asd—cc.
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(Ill) [Lou; JDE (2006]: [, 0q.m > Jom(x) V¥d >0

i.e. the total population is always strictly greater than the total carrying

capacity!  For

V@ 2

Moreover, [, 04m — Jo M(x) as d — 0 or oo, since
9 m asd— 0,
— <
d,m m:=y Jom asd—cc.

Open: What is the value
maXqgso fQ ed,m?
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Moreover, [, 04m — Jo M(x) as d — 0 or oo, since
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— <
d,m m:=y Jom asd—cc.

Open: What is the value
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(Ill) [Lou; JDE (2006]: [, 0q.m > Jom(x) V¥d >0

i.e. the total population is always strictly greater than the total carrying
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V@ 2

Moreover, [, 04m — Jo M(x) as d — 0 or oo, since
9 m asd— 0,

— <
d,m m:=y Jom asd—cc.

Open: What is the value
MaXg~o [o 0a.m? Where is fom
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Competition in Heterogeneous Environment

Consider special case my = mo:

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Umx)—U—-cV)=0 inQ
ouU=90,V=0 on 0f2

(Here, assume by = ¢ = 1 by rescaling.)
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Competition in Heterogeneous Environment

Consider special case my = mo:

bAV + V(m(x)—bU—-V)=0 inQ

diAU+Umx)—U—-cV)=0 inQ
ayuzaz/‘/:o on 9122

(Here, assume by = ¢ = 1 by rescaling.)

Theorem (Lou; JDE (2006))

Suppose my(x) = mp(x) > 0. ThenVb € (b,, 1), there exists ¢ € (0, 1]
small such that if ¢ € (0,¢), (84,,0) is globally asymp stable for some

. = inf 0y .
dy < db, where b Ollr;O/Qm//Q dJ
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Competition in Heterogeneous Environment

Consider special case my = mo:

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Umx)—U—-cV)=0 inQ
avuzaz/‘/:o on 9122

(Here, assume by = ¢ = 1 by rescaling.)

Theorem (Lou; JDE (2006))

Suppose my(x) = mp(x) > 0. ThenVb € (b,, 1), there exists ¢ € (0, 1]
small such that if ¢ € (0,¢), (84,,0) is globally asymp stable for some

. = inf 0y .
dy < db, where b Gllgo/ﬂm//ﬂ dJ

In particular, for some 0 < b, ¢ < 1 and dy, d», U will wipe out V, and
co-existence is no longer possible even when the competition is weak!
A remarkable theorem!
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In fact, [Lou; JDE (2006)] gives more detailed information:

@ b < b, = (0g,,0) unstable (regardless of di, d>, ¢)
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In fact, [Lou; JDE (2006)] gives more detailed information:

@ b < b, = (0g,,0) unstable (regardless of di, d>, ¢)
@ b> b, = (y,0) stable for d; € (d,d) and db > 1/\(m — bg,)
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In fact, [Lou; JDE (2006)] gives more detailed information:

@ b < b, = (0g,,0) unstable (regardless of di, d>, ¢)
@ b> b, = (6,,0) stable for dy € (d,d) and dx > 1/\1(m — bby,)

< d,= 1

Ay (m—b0

I
&
Y
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In fact, [Lou; JDE (2006)] gives more detailed information:

@ b < b, = (0g,,0) unstable (regardless of di, d>, ¢)
@ b> b, = (6,,0) stable for dy € (d,d) and dx > 1/\1(m — bby,)

< d,= 1

Ay (m—b0

d d d,

@ b > b,,c small, for above di, d> = no co-existence
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In fact, [Lou; JDE (2006)] gives more detailed information:

@ b < b, = (0g,,0) unstable (regardless of di, d>, ¢)
@ b> b, = (6,,0) stable for dy € (d,d) and dx > 1/\1(m — bby,)

d, = :

Ay (m—b0

d d d,
@ b > b,,c small, for above di, d> = no co-existence
@ (0,64,) unstable if d; < d» (indep of b, ¢)
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Complete Dynamics: dy < db,0 < b < 1, ¢ small

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Um(x)—U—-cV)=0 inQ
oLU=0,V=0 on 0Q

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 11/26



Complete Dynamics: dy < db,0 < b < 1, ¢ small

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Umx)—U—-cV)=0 inQ
oU=0,V=0 on 00

[Lou; JDE (2006)]: For all (d;, d) € ¥ and for ¢ small, (04,,0) is
globally asymp stable where

Yp = {(di,db) € RT x R : (04, 0) is linearly stable}
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Complete Dynamics: dy < db,0 < b < 1, ¢ small

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Umx)—U—-cV)=0 inQ
8I/U:al/V:0 on 9012

[Lou; JDE (2006)]: For all (d;, d) € ¥ and for ¢ small, (04,,0) is
globally asymp stable where

Yp = {(di,db) € RT x R : (04, 0) is linearly stable}

Note: >, = {(dj, db) ERT xR :dh > 1/)\1(d2,m—b9d1) >0}c Qo=
{(di,db) e RT x RT : dy < db} is indep of ¢, and non-empty for b > b..
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Complete Dynamics: dy < db,0 < b < 1, ¢ small

diAU+Umx)—U—-cV)=0 inQ
AV + V(m(x)—bU—-V)=0 inQ
8VU201,V:0 on 9012

[Lou; JDE (2006)]: For all (d;, d) € ¥ and for ¢ small, (04,,0) is
globally asymp stable where

Yp = {(di,db) € RT x RT : (64,0) is linearly stable}
Note: >, = {(dj,db) € RT x RT : db > 1/)\1(d2,m—b9d1) >0}c Qo=
{(di,db) e RT x RT : dy < db} is indep of ¢, and non-empty for b > b..
Theorem (Lam and Ni; SIAP Vol. 72 No. 6 (2012))

There exists 0 < ¢c* < 1 s.t. forall0 < ¢ < c¢*, and(l< b<1
(i) (04,,0) is globally asymp stable for all (d, d>) € ¥p;
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Complete Dynamics: dy < db,0 < b < 1, ¢ small

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Umx)—U—-cV)=0 inQ
8VU:01,V:0 on 9012

[Lou; JDE (2006)]: For all (d;, d) € ¥ and for ¢ small, (04,,0) is
globally asymp stable where

Yp = {(di,db) € RT x RT : (64,0) is linearly stable}
Note: >, = {(dj,db) € RT x RT : db > 1/)\1(d2,m—b9d1) >0}c Qo=
{(di,db) e RT x RT : dy < db} is indep of ¢, and non-empty for b > b..
Theorem (Lam and Ni; SIAP Vol. 72 No. 6 (2012))
There exists 0 < ¢* < 1 s.t. forall0 < c < c*,and0 < b < 1
(i) (84,,0) is globally asymp stable for all (dy, db) € Xp;

(i) for any (dy, db) € Q \ ¥}, with dy < db, 3 a unique co-existence s.s.
which is globally asymp stable.
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Complete Dynamics: dy < db,0 < b < 1, ¢ small

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Umx)—U—-cV)=0 inQ
&JUZOZ/VZO on 9012

[Lou; JDE (2006)]: For all (d;, d) € ¥ and for ¢ small, (04,,0) is
globally asymp stable where

Yp = {(di,db) € RT x RT : (64,0) is linearly stable}
Note: >, = {(dj,db) € RT x RT : db > 1/)\1(d2,m—b9d1) >0}c Qo=
{(di,db) e RT x RT : dy < db} is indep of ¢, and non-empty for b > b..
Theorem (Lam and Ni; SIAP Vol. 72 No. 6 (2012))
There exists 0 < ¢* < 1 s.t. forall0 < c < c*,and0 < b < 1
(i) (84,,0) is globally asymp stable for all (dy, db) € Xp;

(i) for any (dy, db) € Q \ ¥}, with dy < db, 3 a unique co-existence s.s.
which is globally asymp stable.

Note: c¢* is uniform in (indep of) b € (0, 1).
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Complete Dynamics

@ d; < db,b > b,,csmall, ¥, (the region, including its boundary,
where U always wipes out V regardless of initial values) is colored
in red

d

2

U prevails

[Lam and Ni]

Uniqueness of
Co-existence

[Hutson, Lou and dl
Mischaikow]
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Proof (Sketch)

Strategy (Lou): From monotone flow theory, suffices to show:

dc* € [0,1] s.t. Ve € [0,c*], b € [0,1], di < db, every co-existence s.s.
(if exists) is linearly stable.
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Proof (Sketch)

Strategy (Lou): From monotone flow theory, suffices to show:

dc* € [0,1] s.t. Vc € [0,c*], b € [0,1],d;y < db, every co-existence s.s.
(if exists) is linearly stable.

Prove by contradiction: Assume 3 a seq by — b € [0,1],¢cx — O,

dix < db — dy < db, s.t. 3 co-existence s.s. (Ux, Vi) — (U, V) for
which the linearized eigenvalue A\, < 0.
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Proof (Sketch)

Strategy (Lou): From monotone flow theory, suffices to show:

dc* € [0,1] s.t. Vc € [0,c*], b € [0,1],d;y < db, every co-existence s.s.
(if exists) is linearly stable.

Prove by contradiction: Assume 3 a seq by — b € [0,1],¢cx — O,

dix < db — dy < db, s.t. 3 co-existence s.s. (Ux, Vi) — (U, V) for
which the linearized eigenvalue \x < 0. Then the limit satisfies

diAU+U(m(x)—-U)=0 in Q
AV + V(m(x)—bU—-V)=0 inQ
oU=0,V=0 on 00
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Proof (Sketch)

Strategy (Lou): From monotone flow theory, suffices to show:

dc* € [0,1] s.t. Vc € [0,c*], b € [0,1],d;y < db, every co-existence s.s.

(if exists) is linearly stable.
Prove by contradiction: Assume 3 a seq by — b € [0,1],¢cx — O,

dix < db — dy < db, s.t. 3 co-existence s.s. (Ux, Vi) — (U, V) for

which the linearized eigenvalue \x < 0. Then the limit satisfies

diAU+ U(m(x)—U) =0 in Q
bAV +V(mx)—bU—-V)=0 inQ
o,U=0,V=0 on 09

and therefore

m  ifd; =0,
U= Gdhm if0<d < o,
m if di = 0
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Proof (Sketch)

Strategy (Lou): From monotone flow theory, suffices to show:

dc* € [0,1] s.t. Vc € [0,c*], b € [0,1],d;y < db, every co-existence s.s.
(if exists) is linearly stable.

Prove by contradiction: Assume 3 a seq by — b € [0,1],¢cx — O,

dix < db — dy < db, s.t. 3 co-existence s.s. (Ux, Vi) — (U, V) for
which the linearized eigenvalue A\ < 0. Then the limit satisfies

diAU+U(m(x)—-U)=0 in Q
AV + V(m(x)—bU—-V)=0 inQ
oU=0,V=0 on 00

and therefore

m

(1—b)m ifdo =0,
V="{9

if d =0,
U= 9d1,m if0<d < o,
m if di = 0

O,m—bU if 0 < d2 < 00,
m— bU if d2 = OQ.
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Proof (Sketch)

Consider the cases

( ) di — 0,0, — 0.

(B) dy — 0, dg—)ngOE(O OO]

(C) dy — 0, dbh — .

(D) Forsomed e R", dy — d, d» — d.

(E) d; —>d1oo€R and db — .

(F) bss < 1and dj — dj o0, do — 0o for some (d oo, G oo) € 0%, .
) b

(G) bo < 1and dy — di , do = db o for some (0 o, 0o o) & 0% p__.
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Proof (Sketch)

Consider the cases

( ) di — 0,0, — 0.

(B) dy — 0, dg—)ngOE(O OO]

(C) dy — 0, dbh — .

(D) Forsomed e R", dy — d, d» — d.

(E) d; —>d1oo€R and db — .

(F) bss < 1and dj — dj o0, do — 0o for some (d oo, G oo) € 0%, .
(G) b

@ When by — 1 = V, — 0in some cases. Then, we use
Vi /|| VkllL= — Vi > 0 instead.

o < 1and di = dj o, db — db o for some (dj o, th o) & 0%y, -
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Proof (Sketch)

Consider the cases

(A) di — 0,0, — 0.

(B) dy — 0, dg—)dgooE(O o).

(C) dy — 0, dbh — .

(D) Forsomed e R", dy — d, d» — d.

(E) d; —>d1oo€R and db — .

(F) b < 1and di — dj o, G — b o for some (dj o, G o) € 0% p_.

(G) b

@ When by —+ 1 = V, — 0in some cases. Then, we use
Vi /|| VkllL= — Vi > 0 instead.

@ Krein-Rutman = &, > 0 > W, where ($4, Vi) is linearized
principal eigenfunction

o < 1and di = dj o, db — db o for some (dj o, th o) & 0%y, -
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Proof (Sketch)

Consider the cases

(A) di — 0,0, — 0.

(B) dy — 0, d2—>d2006(0 o).

(C) dy — 0, dbh — .

(D) Forsomed e R", dy — d, d» — d.

(E) d —>d1ooeR and db — .

(F) b < 1and di — dj o, G — b o for some (dj o, G o) € 0% p_.

(G) b

@ When by —+ 1 = V, — 0in some cases. Then, we use
Vi /|| VkllL= — Vi > 0 instead.

@ Krein-Rutman = &, > 0 > W, where ($4, Vi) is linearized
principal eigenfunction

{ diAd+(m—-2U—-cV)®—cUV+ AP =0 inQ,

o < 1and di = dj o, db — db o for some (dj o, th o) & 0%y, -

hAV +(m—bU—-2V)V —bVO+ AU =0 inQ,
9,d=0,¥V=0 on 01.
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Proof (Sketch)

@ Now A\ <0 = either |®y| < |Vg| pointwise or ||z < €|Vg|.2
depending on the various cases above.
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Proof (Sketch)

@ Now A\ <0 = either |®y| < |Vg| pointwise or ||z < €|Vg|.2
depending on the various cases above.

@ With the precise limit of (Uk, Vi) and above estimates on (&, W)
plus again A\, < 0, we can deduce a contradiction from the
linearized eigenvalue system.
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Proof (Sketch)

@ Now )\ < 0= either |®y| < |W| pointwise or | k|2 < €|Vg|2
depending on the various cases above.

@ With the precise limit of (Uk, Vi) and above estimates on (&, W)
plus again A\, < 0, we can deduce a contradiction from the
linearized eigenvalue system.

@ For instance, consider the case (A) when both d;, d> — 0:

/Q [~V + (m — bU — V)V?] /

(BVOW+ VW2) 1\ / w2 = 0.
Q Q
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Proof (Sketch)

@ Now )\ < 0= either |®y| < |W| pointwise or | k|2 < €|Vg|2
depending on the various cases above.

@ With the precise limit of (Uk, Vi) and above estimates on (&, W)
plus again A\, < 0, we can deduce a contradiction from the
linearized eigenvalue system.

@ For instance, consider the case (A) when both d;, d> — 0:

/ [~V + (m — bU - V)wﬂ/(bvwwwz)ﬂ/ w2 = 0.
Q Q Q

To get a contradiction, suffices to show

4
b—— — V%) >0,
JAC anoo Ve
which follows from & + ¥ < 0.
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Proof (Sketch)

To see that ® + ¥ < 0, suffices to show (by max principle)

QAP+ W)+ (mM—2U—cV+A)(®+V)>0 inQ,
B, (®+ W) <0 on 99,
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Proof (Sketch)

To see that ¢ + ¥ < 0, suffices to show (by max principle)

AP+ V)+(Mm-2U—-cV+A)(¢+V)>0 inQ,
O(P+V) <0 on 02,

which is equivalent to

diA(-V)+ (m—2U — cV + \)(—V) — cUV

= ?[—de>+(m—bU—2V)\U+/\\U] —(m-2U—-cV+ ANV —cUV
P

_ Oy a(1-9
=g bve >\<1 d)w

2
+ [31(m—bU—2V)—(m—2U—cV)—cU] v<o

2
sinceU—m,V = (1—-bx)m,0<d; <drandc\,0,thetermsin
the square bracket converge to [1 - 21(1 - boo)} m > 0 in Q, while

2

the first two terms are non-positive.
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Proof (Sketch)

Another important ingredient in our proof: Given d > 0, h € L*>(Q)
may change sign, let u1(d, h) be 1st eigenvalue of

dAY +hp +pup =0 inQ,
Y =0 on 092.
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Proof (Sketch)

Another important ingredient in our proof: Given d > 0, h € L*>(Q)
may change sign, let u1(d, h) be 1st eigenvalue of

dAY +hp+up =0 inQ,
Y =0 on 092.
RK: 11(d,h) =0 < d = 1/)\(h).
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Proof (Sketch)

Another important ingredient in our proof: Given d > 0, h € L>°(Q)
may change sign, let 11(d, h) be 1st eigenvalue of

dAYy+hp+pp =0 inQ,
o =0 on 09Q.

Rk: p1(d,h) =0< d =1/\(h).
Proposition
Let 1 (di(, hx) <0 for all k (i.e. Oy := Og,_p, > O_exists) where
hx € C(Q) and dix > 0 and klim hx = hs in C(2). Then
— 00

(a) ifdx — 0, then 6 — max{hs,0} in L>(Q2);
(b) if dx — oo, then O — huo and by = Ok/110kl oo (@) — 1 in L(Q);
(c) ifdx — ds € RT, then p1(ds, hso) < 0. Moreover,

(I) I'f,LL1(doo, hoo) =0, then 9/( — 0 and&k/||0k||Loo(Q) = 1/)1 in LOO(Q),

where 11 is the 1st eigenfcn (normalized) corresp to 11 (dso, Noo)-
(II) iqu(doo, hoo) <0, then O — edooahoo'

v
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Progress: For 0 < ¢ < 1 [Lam and Ni: SIAP (2012)]

Consider

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Um(x)—U—-cV)=0 inQ
o,U=9,V=0 on 0Q

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 18/26



Progress: For 0 < ¢ < 1 [Lam and Ni: SIAP (2012)]

Consider

diAU+Um(x)—U—-cV)=0 inQ
AV + V(m(x)—bU—-V)=0 inQ
o,U=090,V=0 on 99
() Foranye,35(e) >0s.t. for1 —d<b<1,0<c<1,e<dy<1/e
and dr > dj + ¢, (84,,0) is globally asymp. stable.
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Progress: For 0 < ¢ < 1 [Lam and Ni: SIAP (2012)]

Consider

BAV + V(m(x)—bU—-V)=0 inQ

diAU+Umx)—U—-cV)=0 inQ
o,U=9,V=0 on 022

() Foranye,35(e) >0s.t. fort —d<b<1,0<c<1,e<di<1/e
and dr > dj + ¢, (84,,0) is globally asymp. stable.

Remark: Interesting that ¢ could be even bigger than b in (I).
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Progress: For 0 < ¢ < 1 [Lam and Ni: SIAP (2012)]

Consider

)—U-c
AV +V(m(x)—bU-V)=0 inQ

diAU + U(m(x) — V=0 inQ
auuzauvzo on 0f2

() Foranye,35(e) >0s.t. fort —d<b<1,0<c<1,e<di<1/e
and dr > dj + ¢, (84,,0) is globally asymp. stable.

Remark: Interesting that ¢ could be even bigger than b in (I).

(II) For0 < b,c <1,3e>0s.t. if |di — db| < e then 3 unique positive
s. (U, V). Moreover (U, ) is globally asymp. stable; and if
d1,d2 — d >0, then

o 1 1-c
0.0 5 (126 )%
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Local stability of (64,,0): b > b,,0 <c <1

Now we vary b as a parameter. Then for any ¢ € [0, 1], Lou obtained
the following picture: (the regions shaded yellow represent the (dy, d>)
for which (64, ,0) is locally asymp. stable.)

d, dy1 ; d

h=1 A L) Y ]
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Local stability of (64,,0): b > b,,0 <c <1

Now we vary b as a parameter. Then for any ¢ € [0, 1], Lou obtained
the following picture: (the regions shaded yellow represent the (dy, d>)
for which (g, ,0) is locally asymp. stable.)

d, dy1 ; d

h=1 A L) Y a
0ASb/‘1,Zb/‘QE{(d1,d2)ER+XR+:d1<d2}

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December, 2012 19/26



Local stability of (64,,0): b > b,,0 <c <1

Now we vary b as a parameter. Then for any ¢ € [0, 1], Lou obtained
the following picture: (the regions shaded yellow represent the (dy, d>)
for which (g, ,0) is locally asymp. stable.)

d, dy1 ; d

h=1 A L) Y a

o ASb/‘1,Zb/‘QE{(d1,d2)ER+XR+:d1 <d2}

@ For (dy,db) € Q\ I, (i.e. white area in the upper triangular
region), there is at least one locally stable co-existence s. s.
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Globally Stable Coexistence S.S.: b> b,,0<c < 1
The regions shaded blue represent the (dy, d>) for which there exists a
unique coexistence s.s. which is globally asymp. stable.

d

2

b<l1 d,
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Globally Stable Coexistence S.S.: b> b,,0<c < 1
The region shaded blue represent the (dy, d>) for which there exists a
unique coexistence s.s. which is globally asymp. stable.)

d

[Hutson, Lou and b S 1 dl

Mischaikow]
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Globally Stable Coexistence S.S.: b> b,,0<c < 1
The region shaded blue represent the (dy, d>) for which there exists a
unique coexistence s.s. which is globally asymp. stable.)

d2

U prevails —

(€, .0) stable <

and Nij

Uniqueness of
Coexistence

[Hutson, Lou and hb<1 dl

Mischaikow]
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Sketch of the proofs

() ForO<dy <dp,36 >0s.t. for1—d<b<1and0<c<1,(0gy,0)
is globally asymp. stable.
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Sketch of the proofs

() ForO<dy <dp,36 >0s.t. for1—d<b<1and0<c<1,(0gy,0)
is globally asymp. stable. (A simpler version)
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Sketch of the proofs

() ForO<dy <dp,36 >0s.t. for1—d<b<1and0<c<1,(0gy,0)
is globally asymp. stable. (A simpler version)

@ Fix d; < &b, c €[0,1], let by — 1 and (U, Vi) be coexistence s.s.
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Sketch of the proofs

() ForO<dy <dp,36 >0s.t. for1—d<b<1and0<c<1,(0gy,0)
is globally asymp. stable. (A simpler version)

@ Fix d; < &b, c €[0,1], let by — 1 and (U, Vi) be coexistence s.s.

@ Then by compactness of (Uk, Vi) in C>® x C?>, and the
non-existence result when b = 1, we must have (U, Vi) — one of
S ={(0g4,,0), (0,604,) or (0,0)}.
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Sketch of the proofs

() ForO<dy <dp,36 >0s.t. for1—d<b<1and0<c<1,(0gy,0)
is globally asymp. stable. (A simpler version)

@ Fix d; < &b, c €[0,1], let by — 1 and (U, Vi) be coexistence s.s.

@ Then by compactness of (Uk, Vi) in C>® x C?>, and the
non-existence result when b = 1, we must have (U, Vi) — one of
S ={(0g4,,0), (0,604,) or (0,0)}.

@ However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.
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Sketch of the proofs

() ForO<dy <dp,36 >0s.t. for1—d<b<1and0<c<1,(0gy,0)
is globally asymp. stable. (A simpler version)

@ Fix d; < &b, c €[0,1], let by — 1 and (U, Vi) be coexistence s.s.

@ Then by compactness of (Uk, Vi) in C>® x C?>, and the
non-existence result when b = 1, we must have (U, Vi) — one of
S ={(04,0), (0,6q,) or (0,0)}.

@ However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.

@ (Given each semitrivial/trivial solution, there exists a neighborhood
independent of b, so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)
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Sketch of the proofs

() ForO<dy <dp,36 >0s.t. for1—d<b<1and0<c<1,(0gy,0)
is globally asymp. stable. (A simpler version)

@ Fix d; < &b, c €[0,1], let by — 1 and (U, Vi) be coexistence s.s.

@ Then by compactness of (Uk, Vi) in C>® x C?>, and the
non-existence result when b = 1, we must have (U, Vi) — one of
S ={(04,0), (0,6q,) or (0,0)}.

@ However, the three semitrivial/trivial solutions are stable with
respect to perturbation: the principal eigenvalue of the linearized
system at those solutions are non-zero.

@ (Given each semitrivial/trivial solution, there exists a neighborhood
independent of b, so that the semitrivial/trivial solution is the only
solution in the neighborhood for all k large.)

@ Therefore, we must have (Uy, Vi) € S for all k large. Contradicting
the assumption that (U, V) is a coexistence s.s.
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Sketch of the proofs

(II) For0 < b,c <1,3e > 0s.t. if |di — db| < e then 3 unique positive
s. (U, ). Moreover, (U, V) is globally asymp. stable; and if
d1,d2 —d >0, then

;o 1 1-c
(U’V)_)m(1—b)9d'
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Sketch of the proofs

(II) For0 < b,c <1,3e > 0s.t. if |di — db| < e then 3 unique positive
s. (U, ). Moreover, (U, V) is globally asymp. stable; and if
d1,d2 —d >0, then

;o 1 1-c
(UvVHm(1_b)9d-

Setdy =dy=dandfixb,ce (0,1).
1—-c

@ Observe that 5 ( i_b

) 04 is a solution.
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Sketch of the proofs

(II) For0 < b,c <1,3e > 0s.t. if |di — db| < e then 3 unique positive
s. (U, V). Moreover, (U, V) is globally asymp. stable; and if
d1,d2 — d >0, then

;o 1 1-c
0.9 g (175 )
Setd; = d» = dandfix b,c € (0,1).
1-c : .
1-b >9d is a solution.

@ Show that if (Up, Vp) is a solution, then necessarily
(1 — b)Uo = (1 — C)Vo.

@ Observe that 5 (
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Sketch of the proofs

(II) For0 < b,c <1,3e > 0s.t. if |di — db| < e then 3 unique positive
s. (U, V). Moreover, (U, V) is globally asymp. stable; and if
d1,d2 — d >0, then

;o 1 1-c
0.9 g (175 )
Setd; = d» = dandfix b,c € (0,1).
1-c : .
1-b >9d is a solution.

@ Show that if (Up, Vp) is a solution, then necessarily
(1 — b)Uo = (1 — C)Vo.
Now perturb dy and @, in the same way as in the proof of ().

@ Observe that 5 (
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Slower diffuser always prevails?
Consider a special case
Ui =diAU+ U(m(x) — U—bV)
Vi = oAV + V(m(x) — bU - V)
o,U=0,V=0
U(x,0) = Ug(x) >0, V(x,0) = Vo(x) >0

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion
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Slower diffuser always prevails?
Consider a special case

Ut = diAU+ U(m(x) — U—bV) inQx(0,T)
Vi = AV + V(m(x) — bU — V) inQx(0,T)
ouU=0,V=0 on 9 x (0, T)

U(x,0) = Up(x) > 0, V(x,0) = Vo(x) >0 inQ

where b =1 — ¢ close to 1. [Lam-Ni] indicates, U does not seem to
fare better as d; decreases from ad» to 0.
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Vi = AV + V(m(x) — bU — V) inQx(0,T)
ouU=0,V=0 on 9 x (0, T)

U(x,0) = Up(x) > 0, V(x,0) = Vo(x) >0 inQ

where b =1 — ¢ close to 1. [Lam-Ni] indicates, U does not seem to
fare better as d; decreases from ad» to 0.
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Conjecture

Finally,

Conjecture [Lou; JDE (2006)]: (A4, 0) is globally asymp stable for
b>b,, ce(0,1)and(dy,ds) € Xp.
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