Complete Dynamics in a Heterogeneous Competition-Diffusion System

Wei-Ming Ni

East China Normal University and University of Minnesota

December, 2012

Wei-Ming Ni (ECNU and Minnesota)

Mathematics of Diffusion

The Sec. 74

< 6 b

Lotka-Volterra competition-diffusion system in homogeneous environment:

$$\begin{cases} U_t = d_1 \Delta U + U(a_1 - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(a_2 - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \times (0, T) \end{cases}$$

The Sec. 74

Lotka-Volterra competition-diffusion system in homogeneous environment:

$$\begin{cases} U_t = d_1 \Delta U + U(a_1 - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(a_2 - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \times (0, T) \end{cases}$$

• *a_i*: carrying capacity/intrinsic growth rate;

$$\begin{cases} U_t = d_1 \Delta U + U(a_1 - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(a_2 - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \times (0, T) \end{cases}$$

- *a_i*: carrying capacity/intrinsic growth rate;
- *b*₁, *c*₂: intra-specific competition;

$$\begin{cases} U_t = d_1 \Delta U + U(a_1 - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(a_2 - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \times (0, T) \end{cases}$$

- *a_i*: carrying capacity/intrinsic growth rate;
- *b*₁, *c*₂: intra-specific competition;
- b₂, c₁: inter-specific competition

$$\begin{cases} U_t = d_1 \Delta U + U(a_1 - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(a_2 - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \times (0, T) \end{cases}$$

- *a_i*: carrying capacity/intrinsic growth rate;
- *b*₁, *c*₂: intra-specific competition;
- b₂, c₁: inter-specific competition are all positive constants

$$\begin{cases} U_t = d_1 \Delta U + U(a_1 - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(a_2 - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \times (0, T) \end{cases}$$

- *a_i*: carrying capacity/intrinsic growth rate;
- *b*₁, *c*₂: intra-specific competition;
- b₂, c₁: inter-specific competition are all positive constants
- Weak competition:

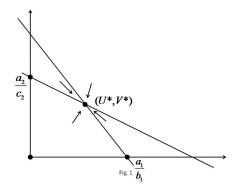
$$\begin{cases} U_t = d_1 \Delta U + U(a_1 - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(a_2 - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \times (0, T) \end{cases}$$

- *a_i*: carrying capacity/intrinsic growth rate;
- *b*₁, *c*₂: intra-specific competition;
- b₂, c₁: inter-specific competition are all positive constants

• Weak competition:
$$\frac{b_1}{b_2} > \frac{a_1}{a_2} > \frac{c_1}{c_2}$$
.

Weak competition: $\frac{b_1}{b_2} > \frac{a_1}{a_2} > \frac{c_1}{c_2}$

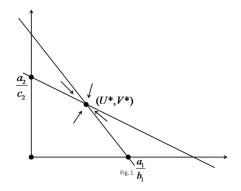
Four constant steady states: $(0,0), (\frac{a_1}{b_1},0), (0,\frac{a_2}{c_2})$, and $(U^*, V^*) = (\frac{a_1c_2 - a_2c_1}{b_1c_2 - b_2c_1}, \frac{b_1a_2 - b_2a_1}{b_1c_2 - b_2c_1})$



< ロ > < 同 > < 回 > < 回 >

Weak competition: $\frac{b_1}{b_2} > \frac{a_1}{a_2} > \frac{c_1}{c_2}$

Four constant steady states: $(0,0), (\frac{a_1}{b_1},0), (0,\frac{a_2}{c_2})$, and $(U^*, V^*) = (\frac{a_1c_2 - a_2c_1}{b_1c_2 - b_2c_1}, \frac{b_1a_2 - b_2a_1}{b_1c_2 - b_2c_1})$



Fact: (U^*, V^*) is globally asymp stable in [U > 0, V > 0]. (In particular, U and V will always co-exist!)

4 E N 4 E N

Weak Competition in Heterogeneous Environment

Consider

$$\left\{ \begin{array}{ll} U_t = d_1 \Delta U + U(m_1(x) - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(m_2(x) - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \times (0, T) \\ U(x, 0) = U_0(x) \ge 0, V(x, 0) = V_0(x) \ge 0 & \text{in } \Omega \end{array} \right.$$

where $m_i(x) \ge 0, i = 1, 2$, nonconstant, and $U_0 \neq 0, V_0 \neq 0$.

BA 4 BA

Weak Competition in Heterogeneous Environment

Consider

$$\left\{ \begin{array}{ll} U_t = d_1 \Delta U + U(m_1(x) - b_1 U - c_1 V) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(m_2(x) - b_2 U - c_2 V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \times (0, T) \\ U(x, 0) = U_0(x) \ge 0, V(x, 0) = V_0(x) \ge 0 & \text{in } \Omega \end{array} \right.$$

where $m_i(x) \ge 0, i = 1, 2$, nonconstant, and $U_0 \neq 0, V_0 \neq 0$.

Likewise we'll focus on the "weak-competition" case, i.e.

$$rac{b_1}{b_2} > rac{m_1(x)}{m_2(x)} > rac{c_1}{c_2} ext{ for all } x \in \overline{\Omega}.$$

イロト 不得 トイヨト イヨト 二日

• Both d_1 , d_2 large $\Rightarrow \exists !$ s.s. which is globally asymp. stable, and tends to $\left(\frac{\overline{m}_1 c_2 - \overline{m}_2 c_1}{b_1 c_2 - b_2 c_1}, \frac{b_1 \overline{m}_2 - \overline{m}_1 b_2}{b_1 c_2 - b_2 c_1}\right)$ as $d_1, d_2 \to \infty$, where $\overline{m}_i = \frac{1}{|\Omega|} \int_{\Omega} m_i(x) dx$. [Lou, private communication]

- Both d_1 , d_2 large $\Rightarrow \exists !$ s.s. which is globally asymp. stable, and tends to $\left(\frac{\overline{m}_1 c_2 \overline{m}_2 c_1}{b_1 c_2 b_2 c_1}, \frac{b_1 \overline{m}_2 \overline{m}_1 b_2}{b_1 c_2 b_2 c_1}\right)$ as $d_1, d_2 \to \infty$, where $\overline{m}_i = \frac{1}{|\Omega|} \int_{\Omega} m_i(x) dx$. [Lou, private communication]
- Both d_1, d_2 small \Rightarrow Similarly, \exists ! s.s. which is globally asymp. stable and tends to $\left(\frac{m_1(x)c_2-m_2(x)c_1}{b_1c_2-b_2c_1}, \frac{b_1m_2(x)-m_1(x)b_2}{b_1c_2-b_2c_1}\right), x \in \Omega$, as $d_1, d_2 \rightarrow 0$. [Hutson, Lou and Mischaikow, JDE (2005)]

- Both d_1 , d_2 large $\Rightarrow \exists !$ s.s. which is globally asymp. stable, and tends to $\left(\frac{\overline{m}_1 c_2 \overline{m}_2 c_1}{b_1 c_2 b_2 c_1}, \frac{b_1 \overline{m}_2 \overline{m}_1 b_2}{b_1 c_2 b_2 c_1}\right)$ as $d_1, d_2 \to \infty$, where $\overline{m}_i = \frac{1}{|\Omega|} \int_{\Omega} m_i(x) dx$. [Lou, private communication]
- Both d_1, d_2 small \Rightarrow Similarly, \exists ! s.s. which is globally asymp. stable and tends to $\left(\frac{m_1(x)c_2-m_2(x)c_1}{b_1c_2-b_2c_1}, \frac{b_1m_2(x)-m_1(x)b_2}{b_1c_2-b_2c_1}\right), x \in \Omega$, as $d_1, d_2 \rightarrow 0$. [Hutson, Lou and Mischaikow, JDE (2005)]
- So far, the situation seems similar to that of the constant coefficients case.

- Both d_1 , d_2 large $\Rightarrow \exists !$ s.s. which is globally asymp. stable, and tends to $\left(\frac{\overline{m}_1 c_2 \overline{m}_2 c_1}{b_1 c_2 b_2 c_1}, \frac{b_1 \overline{m}_2 \overline{m}_1 b_2}{b_1 c_2 b_2 c_1}\right)$ as $d_1, d_2 \to \infty$, where $\overline{m}_i = \frac{1}{|\Omega|} \int_{\Omega} m_i(x) dx$. [Lou, private communication]
- Both d_1, d_2 small \Rightarrow Similarly, \exists ! s.s. which is globally asymp. stable and tends to $\left(\frac{m_1(x)c_2-m_2(x)c_1}{b_1c_2-b_2c_1}, \frac{b_1m_2(x)-m_1(x)b_2}{b_1c_2-b_2c_1}\right), x \in \Omega$, as $d_1, d_2 \rightarrow 0$. [Hutson, Lou and Mischaikow, JDE (2005)]
- So far, the situation seems similar to that of the constant coefficients case.
- However, the remaining case, namely, when d₁, d₂ are not very small nor very large, is drastically different from its counter part in the constant coefficients case.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

$$\begin{cases} u_t = d\Delta u + u(m(x) - u) & \text{in } \Omega \times (0, T), \\ \partial_{\nu} u = 0 & \text{on } \partial\Omega \times (0, T). \end{cases}$$

E N 4 E N

$$\begin{cases} u_t = d\Delta u + u(m(x) - u) & \text{in } \Omega \times (0, T), \\ \partial_{\nu} u = 0 & \text{on } \partial\Omega \times (0, T) \end{cases}$$

Fact: For every d > 0, \exists unique positive s.s. denoted by $\theta_{d,m}$. Moreover, $\theta_{d,m}$ is globally asymp stable.

BA 4 BA

$$\begin{cases} u_t = d\Delta u + u(m(x) - u) & \text{in } \Omega \times (0, T), \\ \partial_{\nu} u = 0 & \text{on } \partial \Omega \times (0, T). \end{cases}$$

Fact: For every d > 0, \exists unique positive s.s. denoted by $\theta_{d,m}$. Moreover, $\theta_{d,m}$ is globally asymp stable.

(II) To handle co-existence for competitions, need to consider for h(x) changes sign

$$\begin{cases} u_t = d\Delta u + u(h(x) - u) & \text{in } \Omega \times (0, T), \\ \partial_{\nu} u = 0 & \text{on } \partial\Omega \times (0, T). \end{cases}$$

$$\begin{cases} u_t = d\Delta u + u(m(x) - u) & \text{in } \Omega \times (0, T), \\ \partial_{\nu} u = 0 & \text{on } \partial \Omega \times (0, T). \end{cases}$$

Fact: For every d > 0, \exists unique positive s.s. denoted by $\theta_{d,m}$. Moreover, $\theta_{d,m}$ is globally asymp stable.

(II) To handle co-existence for competitions, need to consider for h(x) changes sign

$$\begin{cases} u_t = d\Delta u + u(h(x) - u) & \text{in } \Omega \times (0, T), \\ \partial_{\nu} u = 0 & \text{on } \partial\Omega \times (0, T). \end{cases}$$

Facts: (i) If $\int_{\Omega} h(x) \ge 0$, then $\forall d > 0$, \exists unique positive s.s. denoted by $\theta_{d,h}$. Moreover, $\theta_{d,h}$ is globally asymp stable.

$$\begin{cases} u_t = d\Delta u + u(m(x) - u) & \text{in } \Omega \times (0, T), \\ \partial_{\nu} u = 0 & \text{on } \partial \Omega \times (0, T). \end{cases}$$

Fact: For every d > 0, \exists unique positive s.s. denoted by $\theta_{d,m}$. Moreover, $\theta_{d,m}$ is globally asymp stable.

(II) To handle co-existence for competitions, need to consider for h(x) changes sign

$$\begin{cases} u_t = d\Delta u + u(h(x) - u) & \text{in } \Omega \times (0, T), \\ \partial_{\nu} u = 0 & \text{on } \partial\Omega \times (0, T). \end{cases}$$

Facts: (i) If $\int_{\Omega} h(x) \ge 0$, then $\forall d > 0$, \exists unique positive s.s. denoted by $\theta_{d,h}$. Moreover, $\theta_{d,h}$ is globally asymp stable. (ii) If $\int_{\Omega} h(x) < 0$, then the same conclusion in (i) holds for all $0 < d < 1/\lambda_1(h)$, where $\lambda_1(h)$ is the nonzero principal eigenvalue of $\beta_{A,h}$

Wei-Ming Ni (ECNU and Minnesota)

Principal Eigenvalue

$$\begin{cases} \Delta \varphi + \lambda h(x) \varphi = \mathbf{0} & \text{ in } \Omega, \\ \partial_{\nu} \varphi = \mathbf{0} & \text{ on } \partial \Omega, \end{cases}$$

where $h \neq const$, could change sign in Ω . λ is a *principal eigenvalue* if there is a positive solution. (Note: 0 is always a principal eigenvalue.)

Principal Eigenvalue

$$\begin{cases} \Delta \varphi + \lambda h(x) \varphi = \mathbf{0} & \text{ in } \Omega, \\ \partial_{\nu} \varphi = \mathbf{0} & \text{ on } \partial \Omega, \end{cases}$$

where $h \neq const$, could change sign in Ω . λ is a *principal eigenvalue* if there is a positive solution. (Note: 0 is always a principal eigenvalue.)

Lemma

The problem has a nonzero principal eigenvalue $\lambda_1 = \lambda_1(h)$ iff h changes sign and $\int_{\Omega} h \neq 0$. More precisely, if h changes sign, then

$$\ \, \mathbf{0} \ \, \int_\Omega h = \mathbf{0} \Leftrightarrow \ \, \mathbf{0} \text{ is the only principal eigenvalue.}$$

$$2 \quad \int_{\Omega} h > 0 \Leftrightarrow \ \lambda_1(h) < 0.$$

$$3 \quad \int_{\Omega} h < 0 \Leftrightarrow \ \lambda_1(h) > 0.$$

• $\lambda_1(h_1) > \lambda_1(h_2)$ if $h_1 \le h_2$, $h_1 \ne h_2$, and h_1, h_2 both change sign.

⑤ $\lambda_1(h)$ is continuous in *h*; i.e. $\lambda_1(h_\ell) \rightarrow \lambda_1(h)$ if $h_\ell \rightarrow h$ in L[∞](Ω).

(III) [Lou; JDE (2006]: $\int_{\Omega} \theta_{d,m} > \int_{\Omega} m(x) \quad \forall d > 0$

i.e. the total population is **always** strictly greater than the total carrying capacity!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$0 = d \int_{\Omega} \frac{|\nabla \theta_{d,m}|^2}{\theta_{d,m}^2} + \int_{\Omega} m - \int_{\Omega} \theta_{d,m}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathbf{0} = \boldsymbol{d} \int_{\Omega} \frac{|\nabla \theta_{\boldsymbol{d},\boldsymbol{m}}|^2}{\theta_{\boldsymbol{d},\boldsymbol{m}}^2} + \int_{\Omega} \boldsymbol{m} - \int_{\Omega} \theta_{\boldsymbol{d},\boldsymbol{m}}$$

Moreover, $\int_{\Omega} \theta_{d,m} \to \int_{\Omega} m(x)$ as $d \to 0$ or ∞ , since

$$heta_{d,m} o \left\{ egin{array}{cc} m & ext{as } d o 0, \ \overline{m} := rac{1}{|\Omega|} \int_{\Omega} m & ext{as } d o \infty. \end{array}
ight.$$

$$0 = d \int_{\Omega} \frac{|\nabla \theta_{d,m}|^2}{\theta_{d,m}^2} + \int_{\Omega} m - \int_{\Omega} \theta_{d,m}$$

Moreover, $\int_{\Omega} \theta_{d,m} \to \int_{\Omega} m(x)$ as $d \to 0$ or ∞ , since

$$heta_{d,m} o \left\{ egin{array}{cc} m & ext{as } d o 0, \ \overline{m} := rac{1}{|\Omega|} \int_{\Omega} m & ext{as } d o \infty. \end{array}
ight.$$

Open: What is the value $\max_{d>0} \int_{\Omega} \theta_{d,m}$?

$$0 = d \int_{\Omega} \frac{|\nabla \theta_{d,m}|^2}{\theta_{d,m}^2} + \int_{\Omega} m - \int_{\Omega} \theta_{d,m}$$

Moreover, $\int_{\Omega} \theta_{d,m} \to \int_{\Omega} m(x)$ as $d \to 0$ or ∞ , since

$$heta_{d,m} o \left\{ egin{array}{cc} m & ext{as } d o 0, \ \overline{m} := rac{1}{|\Omega|} \int_{\Omega} m & ext{as } d o \infty. \end{array}
ight.$$

Open: What is the value $\max_{d>0} \int_{\Omega} \theta_{d,m}$? Where is $\max_{d>0} \int_{\Omega} \theta_{d,m}$ assumed?

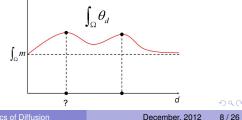
EN 4 EN

$$0 = d \int_{\Omega} \frac{|\nabla \theta_{d,m}|^2}{\theta_{d,m}^2} + \int_{\Omega} m - \int_{\Omega} \theta_{d,m}$$

Moreover, $\int_{\Omega} \theta_{d,m} \to \int_{\Omega} m(x)$ as $d \to 0$ or ∞ , since

$$heta_{d,m} o \left\{ egin{array}{cc} m & ext{as } d o 0, \ \overline{m} := rac{1}{|\Omega|} \int_\Omega m & ext{as } d o \infty. \end{array}
ight.$$

Open: What is the value $\max_{d>0} \int_{\Omega} \theta_{d,m}$? Where is $\max_{d>0} \int_{\Omega} \theta_{d,m}$ assumed?



Competition in Heterogeneous Environment

Consider special case $m_1 \equiv m_2$:

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

(Here, assume $b_1 = c_2 = 1$ by rescaling.)

A D N A B N A B N A B N

Competition in Heterogeneous Environment

Consider special case $m_1 \equiv m_2$:

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

(Here, assume $b_1 = c_2 = 1$ by rescaling.)

Theorem (Lou; JDE (2006))

Suppose $m_1(x) = m_2(x) \ge 0$. Then $\forall b \in (b_*, 1)$, there exists $\overline{c} \in (0, 1]$ small such that if $c \in (0, \overline{c})$, $(\theta_{d_1}, 0)$ is globally asymp stable for some $d_1 < d_2$, where $b_* = \inf_{d>0} \int_{\Omega} m / \int_{\Omega} \theta_d$.

A (10) A (10)

Competition in Heterogeneous Environment

Consider special case $m_1 \equiv m_2$:

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

(Here, assume $b_1 = c_2 = 1$ by rescaling.)

Theorem (Lou; JDE (2006))

Suppose $m_1(x) = m_2(x) \ge 0$. Then $\forall b \in (b_*, 1)$, there exists $\overline{c} \in (0, 1]$ small such that if $c \in (0, \overline{c})$, $(\theta_{d_1}, 0)$ is globally asymp stable for some $d_1 < d_2$, where $b_* = \inf_{d>0} \int_{\Omega} m / \int_{\Omega} \theta_d$.

In particular, for some 0 < b, c < 1 and d_1, d_2, U will wipe out *V*, and co-existence is no longer possible even when the competition is weak! *A remarkable theorem!*

Wei-Ming Ni (ECNU and Minnesota)

A (10) A (10)

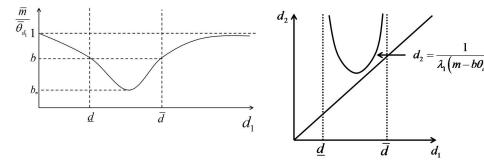
• $b < b_* \Rightarrow (\theta_{d_1}, 0)$ unstable (regardless of d_1, d_2, c)

э

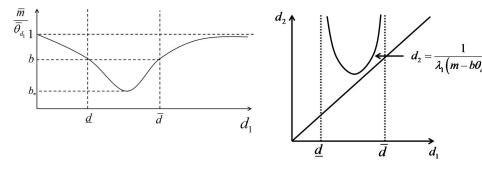
- $b < b_* \Rightarrow (\theta_{d_1}, 0)$ unstable (regardless of d_1, d_2, c)
- $b > b_* \Rightarrow (\theta_{d_1}, 0)$ stable for $d_1 \in (\underline{d}, \overline{d})$ and $d_2 > 1/\lambda_1(m b\theta_{d_1})$

3

- $b < b_* \Rightarrow (\theta_{d_1}, 0)$ unstable (regardless of d_1, d_2, c)
- $b > b_* \Rightarrow (\theta_{d_1}, 0)$ stable for $d_1 \in (\underline{d}, \overline{d})$ and $d_2 > 1/\lambda_1(m b\theta_{d_1})$



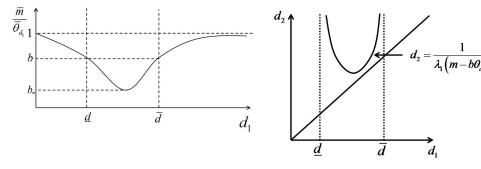
- $b < b_* \Rightarrow (\theta_{d_1}, 0)$ unstable (regardless of d_1, d_2, c)
- $b > b_* \Rightarrow (\theta_{d_1}, 0)$ stable for $d_1 \in (\underline{d}, \overline{d})$ and $d_2 > 1/\lambda_1(m b\theta_{d_1})$



• $b > b_*, c$ small, for above $d_1, d_2 \Rightarrow$ no co-existence

In fact, [Lou; JDE (2006)] gives more detailed information:

- $b < b_* \Rightarrow (\theta_{d_1}, 0)$ unstable (regardless of d_1, d_2, c)
- $b > b_* \Rightarrow (\theta_{d_1}, 0)$ stable for $d_1 \in (\underline{d}, \overline{d})$ and $d_2 > 1/\lambda_1(m b\theta_{d_1})$



- $b > b_*, c$ small, for above $d_1, d_2 \Rightarrow$ no co-existence
- $(0, \theta_{d_2})$ unstable if $d_1 < d_2$ (indep of b, c)

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

э

イロト イポト イヨト イヨト

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

[Lou; JDE (2006)]: For all $(d_1, d_2) \in \Sigma_b$ and for c small, $(\theta_{d_1}, 0)$ is globally asymp stable where

 $\Sigma_b = \{ (d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : (\theta_{d_1}, 0) \text{ is linearly stable} \}$

3

4 3 5 4 3 5 5

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

[Lou; JDE (2006)]: For all $(d_1, d_2) \in \Sigma_b$ and for *c* small, $(\theta_{d_1}, 0)$ is globally asymp stable where

 $\Sigma_b = \{ (d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : (\theta_{d_1}, 0) \text{ is linearly stable} \}$

Note: $\Sigma_b = \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_2 > 1/\lambda_1(d_2, m - b\theta_{d_1}) > 0\} \subset \mathcal{Q} \equiv \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_1 < d_2\}$ is indep of c, and non-empty for $b > b_*$.

4 D N 4 B N 4 B N 4 B N

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

[Lou; JDE (2006)]: For all $(d_1, d_2) \in \Sigma_b$ and for *c* small, $(\theta_{d_1}, 0)$ is globally asymp stable where

 $\Sigma_b = \{ (d_1, d_2) \in \mathbb{R}^+ imes \mathbb{R}^+ : (\theta_{d_1}, 0) \text{ is linearly stable} \}$

Note: $\Sigma_b = \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_2 > 1/\lambda_1(d_2, m - b\theta_{d_1}) > 0\} \subset \mathcal{Q} \equiv \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_1 < d_2\}$ is indep of c, and non-empty for $b > b_*$.

Theorem (Lam and Ni; SIAP Vol. 72 No. 6 (2012))

There exists $0 < c^* < 1$ s.t. for all $0 < c < c^*$, and 0 < b < 1(i) $(\theta_{d_1}, 0)$ is globally asymp stable for all $(d_1, d_2) \in \overline{\Sigma}_b$;

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

[Lou; JDE (2006)]: For all $(d_1, d_2) \in \Sigma_b$ and for *c* small, $(\theta_{d_1}, 0)$ is globally asymp stable where

 $\Sigma_b = \{ (d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : (\theta_{d_1}, 0) \text{ is linearly stable} \}$

Note: $\Sigma_b = \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_2 > 1/\lambda_1(d_2, m - b\theta_{d_1}) > 0\} \subset \mathcal{Q} \equiv \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_1 < d_2\}$ is indep of c, and non-empty for $b > b_*$.

Theorem (Lam and Ni; SIAP Vol. 72 No. 6 (2012))

There exists $0 < c^* < 1$ s.t. for all $0 < c < c^*$, and 0 < b < 1(*i*) $(\theta_{d_1}, 0)$ is globally asymp stable for all $(d_1, d_2) \in \overline{\Sigma}_b$; (*ii*) for any $(d_1, d_2) \in Q \setminus \overline{\Sigma}_b$ with $d_1 \le d_2, \exists$ a unique co-existence s.s. which is globally asymp stable.

3

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

[Lou; JDE (2006)]: For all $(d_1, d_2) \in \Sigma_b$ and for *c* small, $(\theta_{d_1}, 0)$ is globally asymp stable where

 $\Sigma_b = \{ (d_1, d_2) \in \mathbb{R}^+ imes \mathbb{R}^+ : (\theta_{d_1}, 0) \text{ is linearly stable} \}$

Note: $\Sigma_b = \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_2 > 1/\lambda_1(d_2, m - b\theta_{d_1}) > 0\} \subset \mathcal{Q} \equiv \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_1 < d_2\}$ is indep of c, and non-empty for $b > b_*$.

Theorem (Lam and Ni; SIAP Vol. 72 No. 6 (2012))

There exists $0 < c^* < 1$ s.t. for all $0 < c < c^*$, and 0 < b < 1(*i*) $(\theta_{d_1}, 0)$ is globally asymp stable for all $(d_1, d_2) \in \overline{\Sigma}_b$; (*ii*) for any $(d_1, d_2) \in Q \setminus \overline{\Sigma}_b$ with $d_1 \le d_2, \exists$ a unique co-existence s.s. which is globally asymp stable.

Note: c^* is uniform in (indep of) $b \in (0, 1)$.

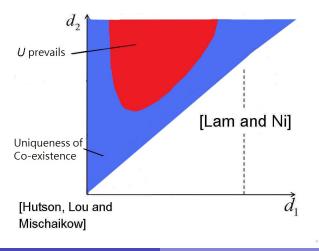
Wei-Ming Ni (ECNU and Minnesota)

Mathematics of Diffusion

3

Complete Dynamics

 d₁ ≤ d₂, b > b_{*}, c small, Σ_b (the region, including its boundary, where U always wipes out V regardless of initial values) is colored in red



Wei-Ming Ni (ECNU and Minnesota)

2

イロト イヨト イヨト イヨト

Strategy (Lou): From monotone flow theory, *suffices to show:* $\exists c^* \in [0, 1] \ s.t. \ \forall c \in [0, c^*], b \in [0, 1], d_1 \leq d_2$, every co-existence s.s. (if exists) is linearly stable.

3

Strategy (Lou): From monotone flow theory, *suffices to show:* $\exists c^* \in [0, 1] \ s.t. \ \forall c \in [0, c^*], b \in [0, 1], d_1 \leq d_2$, every co-existence s.s. (*if exists*) is linearly stable.

Prove by contradiction: Assume \exists a seq $b_k \rightarrow b \in [0, 1], c_k \rightarrow 0$, $d_{1,k} \leq d_{2,k} \rightarrow d_1 \leq d_2$, s.t. \exists co-existence s.s. $(U_k, V_k) \rightarrow (U, V)$ for which the linearized eigenvalue $\lambda_k \leq 0$.

Strategy (Lou): From monotone flow theory, *suffices to show:* $\exists c^* \in [0, 1] \ s.t. \ \forall c \in [0, c^*], b \in [0, 1], d_1 \leq d_2$, every co-existence s.s. (*if exists*) is linearly stable.

Prove by contradiction: Assume \exists a seq $b_k \rightarrow b \in [0, 1], c_k \rightarrow 0$, $d_{1,k} \leq d_{2,k} \rightarrow d_1 \leq d_2$, s.t. \exists co-existence s.s. $(U_k, V_k) \rightarrow (U, V)$ for which the linearized eigenvalue $\lambda_k \leq 0$. Then the limit satisfies

$$\begin{cases} d_1 \Delta U + U(m(x) - U) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

Strategy (Lou): From monotone flow theory, *suffices to show:* $\exists c^* \in [0, 1] \ s.t. \ \forall c \in [0, c^*], b \in [0, 1], d_1 \leq d_2$, every co-existence s.s. (*if exists*) is linearly stable.

Prove by contradiction: Assume \exists a seq $b_k \rightarrow b \in [0, 1], c_k \rightarrow 0$, $d_{1,k} \leq d_{2,k} \rightarrow d_1 \leq d_2$, s.t. \exists co-existence s.s. $(U_k, V_k) \rightarrow (U, V)$ for which the linearized eigenvalue $\lambda_k \leq 0$. Then the limit satisfies

$$\begin{cases} d_1 \Delta U + U(m(x) - U) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

and therefore

$$U = \begin{cases} m & \text{if } d_1 = 0, \\ \theta_{d_1,m} & \text{if } 0 < d_1 < \infty, \\ \overline{m} & \text{if } d_1 = \infty \end{cases}$$

Strategy (Lou): From monotone flow theory, *suffices to show:* $\exists c^* \in [0, 1] \ s.t. \ \forall c \in [0, c^*], b \in [0, 1], d_1 \leq d_2$, every co-existence s.s. (*if exists*) is linearly stable.

Prove by contradiction: Assume \exists a seq $b_k \rightarrow b \in [0, 1], c_k \rightarrow 0$, $d_{1,k} \leq d_{2,k} \rightarrow d_1 \leq d_2$, s.t. \exists co-existence s.s. $(U_k, V_k) \rightarrow (U, V)$ for which the linearized eigenvalue $\lambda_k \leq 0$. Then the limit satisfies

$$\begin{cases} d_1 \Delta U + U(m(x) - U) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

and therefore

$$U = \begin{cases} m & \text{if } d_1 = 0, \\ \theta_{d_1,m} & \text{if } 0 < d_1 < \infty, \\ \overline{m} & \text{if } d_1 = \infty \end{cases}$$
$$V = \begin{cases} (1-b)m & \text{if } d_2 = 0, \\ \theta_{d_2,m-bU} & \text{if } 0 < d_2 < \infty, \\ \overline{m} - b\overline{U} & \text{if } d_2 = \infty, \\ \overline{m} - b\overline{U} & \text{if } d_2 = \infty, \end{cases}$$

Wei-Ming Ni (ECNU and Minnesota)

Consider the cases

 $\begin{array}{ll} (\mathsf{A}) & d_1 \rightarrow 0, \, d_2 \rightarrow 0. \\ (\mathsf{B}) & d_1 \rightarrow 0, \, d_2 \rightarrow d_{2,\infty} \in (0,\infty]. \\ (\mathsf{C}) & d_1 \rightarrow \infty, \, d_2 \rightarrow \infty. \\ (\mathsf{D}) & \text{For some } d \in \mathbf{R}^+, \, d_1 \rightarrow d, \, d_2 \rightarrow d. \\ (\mathsf{E}) & d_1 \rightarrow d_{1,\infty} \in \mathbf{R}^+ \text{ and } d_2 \rightarrow \infty. \\ (\mathsf{F}) & b_{\infty} < 1 \text{ and } d_1 \rightarrow d_{1,\infty}, \, d_2 \rightarrow d_{2,\infty} \text{ for some } (d_{1,\infty}, d_{2,\infty}) \in \partial \Sigma_{b_{\infty}}. \\ (\mathsf{G}) & b_{\infty} < 1 \text{ and } d_1 \rightarrow d_{1,\infty}, \, d_2 \rightarrow d_{2,\infty} \text{ for some } (d_{1,\infty}, d_{2,\infty}) \notin \partial \Sigma_{b_{\infty}}. \end{array}$

Consider the cases

(A)
$$d_1 \rightarrow 0, d_2 \rightarrow 0.$$

(B) $d_1 \rightarrow 0, d_2 \rightarrow d_{2,\infty} \in (0,\infty].$
(C) $d_1 \rightarrow \infty, d_2 \rightarrow \infty.$
(D) For some $d \in \mathbb{R}^+, d_1 \rightarrow d, d_2 \rightarrow d.$
(E) $d_1 \rightarrow d_{1,\infty} \in \mathbb{R}^+$ and $d_2 \rightarrow \infty.$
(F) $b_{\infty} < 1$ and $d_1 \rightarrow d_{1,\infty}, d_2 \rightarrow d_{2,\infty}$ for some $(d_{1,\infty}, d_{2,\infty}) \in \partial \Sigma_{b_{\infty}}.$
(G) $b_{\infty} < 1$ and $d_1 \rightarrow d_{1,\infty}, d_2 \rightarrow d_{2,\infty}$ for some $(d_{1,\infty}, d_{2,\infty}) \notin \partial \Sigma_{b_{\infty}}.$

• When $b_k \to 1 \Rightarrow V_k \to 0$ in some cases. Then, we use $V_k / \|V_k\|_{L^{\infty}} \to V_{\infty} > 0$ instead.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the cases

(A)
$$d_1 \rightarrow 0, d_2 \rightarrow 0.$$

(B) $d_1 \rightarrow 0, d_2 \rightarrow d_{2,\infty} \in (0,\infty].$
(C) $d_1 \rightarrow \infty, d_2 \rightarrow \infty.$
(D) For some $d \in \mathbf{R}^+, d_1 \rightarrow d, d_2 \rightarrow d.$
(E) $d_1 \rightarrow d_{1,\infty} \in \mathbf{R}^+$ and $d_2 \rightarrow \infty.$
(F) $b_{\infty} < 1$ and $d_1 \rightarrow d_{1,\infty}, d_2 \rightarrow d_{2,\infty}$ for some $(d_{1,\infty}, d_{2,\infty}) \in \partial \Sigma_{b_{\infty}}.$
(G) $b_{\infty} < 1$ and $d_1 \rightarrow d_{1,\infty}, d_2 \rightarrow d_{2,\infty}$ for some $(d_{1,\infty}, d_{2,\infty}) \notin \partial \Sigma_{b_{\infty}}.$

- When $b_k \to 1 \Rightarrow V_k \to 0$ in some cases. Then, we use $V_k / \|V_k\|_{L^{\infty}} \to V_{\infty} > 0$ instead.
- Krein-Rutman $\Rightarrow \Phi_k > 0 > \Psi_k$ where (Φ_k, Ψ_k) is linearized principal eigenfunction

Consider the cases

(A)
$$d_1 \rightarrow 0, d_2 \rightarrow 0.$$

(B) $d_1 \rightarrow 0, d_2 \rightarrow d_{2,\infty} \in (0,\infty].$
(C) $d_1 \rightarrow \infty, d_2 \rightarrow \infty.$
(D) For some $d \in \mathbf{R}^+, d_1 \rightarrow d, d_2 \rightarrow d.$
(E) $d_1 \rightarrow d_{1,\infty} \in \mathbf{R}^+$ and $d_2 \rightarrow \infty.$
(F) $b_{\infty} < 1$ and $d_1 \rightarrow d_{1,\infty}, d_2 \rightarrow d_{2,\infty}$ for some $(d_{1,\infty}, d_{2,\infty}) \in \partial \Sigma_{b_{\infty}}.$
(G) $b_{\infty} < 1$ and $d_1 \rightarrow d_{1,\infty}, d_2 \rightarrow d_{2,\infty}$ for some $(d_{1,\infty}, d_{2,\infty}) \notin \partial \Sigma_{b_{\infty}}.$

- When $b_k \to 1 \Rightarrow V_k \to 0$ in some cases. Then, we use $V_k / \|V_k\|_{L^{\infty}} \to V_{\infty} > 0$ instead.
- Krein-Rutman $\Rightarrow \Phi_k > 0 > \Psi_k$ where (Φ_k, Ψ_k) is linearized principal eigenfunction

$$\begin{cases} d_1 \Delta \Phi + (m - 2U - cV)\Phi - cU\Psi + \lambda \Phi = 0 & \text{in } \Omega, \\ d_2 \Delta \Psi + (m - bU - 2V)\Psi - bV\Phi + \lambda \Psi = 0 & \text{in } \Omega, \\ \partial_\nu \Phi = \partial_\nu \Psi = 0 & \text{on } \partial\Omega \end{cases}$$

Now λ_k ≤ 0 ⇒ either |Φ_k| < |Ψ_k| pointwise or |Φ_k|_{L²} ≤ ε|Ψ_k|_{L²} depending on the various cases above.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Now λ_k ≤ 0 ⇒ either |Φ_k| < |Ψ_k| pointwise or |Φ_k|_{L²} ≤ ε|Ψ_k|_{L²} depending on the various cases above.
- With the precise limit of (U_k, V_k) and above estimates on (Φ_k, Ψ_k) plus again λ_k ≤ 0, we can deduce a contradiction from the linearized eigenvalue system.

- Now λ_k ≤ 0 ⇒ either |Φ_k| < |Ψ_k| pointwise or |Φ_k|_{L²} ≤ ε|Ψ_k|_{L²} depending on the various cases above.
- With the precise limit of (U_k, V_k) and above estimates on (Φ_k, Ψ_k) plus again λ_k ≤ 0, we can deduce a contradiction from the linearized eigenvalue system.
- For instance, consider the case (A) when both $d_1, d_2 \rightarrow 0$:

$$\int_{\Omega} \left[-d_2 |\nabla \Psi|^2 + (m - bU - V) \Psi^2 \right] - \int_{\Omega} (bV \Phi \Psi + V \Psi^2) + \lambda \int_{\Omega} \Psi^2 = 0.$$

- Now λ_k ≤ 0 ⇒ either |Φ_k| < |Ψ_k| pointwise or |Φ_k|_{L²} ≤ ε|Ψ_k|_{L²} depending on the various cases above.
- With the precise limit of (U_k, V_k) and above estimates on (Φ_k, Ψ_k) plus again λ_k ≤ 0, we can deduce a contradiction from the linearized eigenvalue system.
- For instance, consider the case (A) when both $d_1, d_2 \rightarrow 0$:

$$\int_{\Omega} \left[-d_2 |\nabla \Psi|^2 + (m - bU - V) \Psi^2 \right] - \int_{\Omega} (bV \Phi \Psi + V \Psi^2) + \lambda \int_{\Omega} \Psi^2 = 0.$$

To get a contradiction, suffices to show

$$\int_{\Omega}(b\frac{V}{\|V\|_{L^{\infty}(\Omega)}}\Phi\Psi+\frac{V}{\|V\|_{L^{\infty}(\Omega)}}\Psi^{2})>0,$$

which follows from $\Phi+\Psi<0.$

To see that $\Phi + \Psi < 0$, suffices to show (by max principle)

$$\left\{ \begin{array}{ll} d_1 \Delta (\Phi + \Psi) + (m - 2U - cV + \lambda)(\Phi + \Psi) > 0 & \text{ in } \Omega, \\ \partial_{\nu} (\Phi + \Psi) \leq 0 & \text{ on } \partial\Omega, \end{array} \right.$$

To see that $\Phi + \Psi < 0$, suffices to show (by max principle)

$$\begin{cases} d_1 \Delta (\Phi + \Psi) + (m - 2U - cV + \lambda)(\Phi + \Psi) > 0 & \text{in } \Omega, \\ \partial_{\nu} (\Phi + \Psi) \leq 0 & \text{on } \partial \Omega, \end{cases}$$

which is equivalent to

$$\begin{aligned} d_{1}\Delta(-\Psi) + (m - 2U - cV + \lambda)(-\Psi) - cU\Psi \\ &= \frac{d_{1}}{d_{2}} \left[-bV\Phi + (m - bU - 2V)\Psi + \lambda\Psi \right] - (m - 2U - cV + \lambda)\Psi - cU\Psi \\ &= -\frac{d_{1}}{d_{2}}bV\Phi - \lambda \left(1 - \frac{d_{1}}{d_{2}}\right)\Psi \\ &+ \left[\frac{d_{1}}{d_{2}}(m - bU - 2V) - (m - 2U - cV) - cU\right]\Psi < 0 \\ \text{since } U \to m, \ V \to (1 - b_{\infty})m, \ 0 < d_{1} \le d_{2} \text{ and } c \searrow 0, \text{ the terms in the square bracket converge to } \left[1 - \frac{d_{1}}{d_{2}}(1 - b_{\infty})\right]m > 0 \text{ in } \bar{\Omega}, \text{ while the first two terms are non-positive.} \end{aligned}$$

Wei-Ming Ni (ECNU and Minnesota)

Another important ingredient in our proof: Given d > 0, $h \in L^{\infty}(\Omega)$ may change sign, let $\mu_1(d, h)$ be 1st eigenvalue of

$$\begin{cases} d\Delta \psi + h\psi + \mu\psi = 0 & \text{in } \Omega, \\ \partial_{\nu}\psi = 0 & \text{on } \partial\Omega. \end{cases}$$

3

Another important ingredient in our proof: Given d > 0, $h \in L^{\infty}(\Omega)$ may change sign, let $\mu_1(d, h)$ be 1st eigenvalue of

$$\begin{cases} d\Delta \psi + h\psi + \mu\psi = 0 & \text{in } \Omega, \\ \partial_{\nu}\psi = 0 & \text{on } \partial\Omega. \end{cases}$$

Rk: $\mu_1(d, h) = 0 \Leftrightarrow d = 1/\lambda_1(h)$.

3

Another important ingredient in our proof: Given d > 0, $h \in L^{\infty}(\Omega)$ may change sign, let $\mu_1(d, h)$ be 1st eigenvalue of

$$\begin{cases} d\Delta \psi + h\psi + \mu\psi = 0 & \text{in } \Omega, \\ \partial_{\nu}\psi = 0 & \text{on } \partial\Omega. \end{cases}$$

Rk: $\mu_1(d, h) = 0 \Leftrightarrow d = 1/\lambda_1(h)$.

Proposition

Let $\mu_1(d_k, h_k) < 0$ for all k (i.e. $\theta_k := \theta_{d_k, h_k} > 0$ exists) where $h_k \in C(\overline{\Omega})$ and $d_k > 0$ and $\lim_{k \to \infty} h_k = h_\infty$ in $C(\overline{\Omega})$. Then (a) if $d_k \to 0$, then $\theta_k \to \max\{h_\infty, 0\}$ in $L^{\infty}(\Omega)$; (b) if $d_k \to \infty$, then $\theta_k \to \overline{h}_\infty$ and $\tilde{\theta}_k := \theta_k / \|\theta_k\|_{L^{\infty}(\Omega)} \to 1$ in $L^{\infty}(\Omega)$; (c) if $d_k \to d_\infty \in \mathbb{R}^+$, then $\mu_1(d_\infty, h_\infty) \le 0$. Moreover, (i) if $\mu_1(d_\infty, h_\infty) = 0$, then $\theta_k \to 0$ and $\theta_k / \|\theta_k\|_{L^{\infty}(\Omega)} \to \psi_1$ in $L^{\infty}(\Omega)$, where ψ_1 is the 1st eigenfon (normalized) corresp to $\mu_1(d_\infty, h_\infty)$. (ii) if $\mu_1(d_\infty, h_\infty) < 0$, then $\theta_k \to \theta_{d_\infty, h_\infty}$.

Progress: For $0 \le c \le 1$ [Lam and Ni: SIAP (2012)]

Consider

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial \Omega \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Progress: For $0 \le c \le 1$ [Lam and Ni: SIAP (2012)] Consider

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

(I) For any ϵ , $\exists \delta(\epsilon) > 0$ s.t. for $1 - \delta < b < 1$, $0 \le c \le 1$, $\epsilon < d_1 < 1/\epsilon$ and $d_2 \ge d_1 + \epsilon$, $(\theta_{d_1}, 0)$ is globally asymp. stable.

3

(B)

Progress: For $0 \le c \le 1$ [Lam and Ni: SIAP (2012)] Consider

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

(I) For any ϵ , $\exists \delta(\epsilon) > 0$ s.t. for $1 - \delta < b < 1$, $0 \le c \le 1$, $\epsilon < d_1 < 1/\epsilon$ and $d_2 \ge d_1 + \epsilon$, $(\theta_{d_1}, 0)$ is globally asymp. stable.

Remark: Interesting that *c* could be *even* bigger than *b* in (I).

3

A B A A B A

Progress: For $0 \le c \le 1$ [Lam and Ni: SIAP (2012)] Consider

$$\begin{cases} d_1 \Delta U + U(m(x) - U - cV) = 0 & \text{in } \Omega \\ d_2 \Delta V + V(m(x) - bU - V) = 0 & \text{in } \Omega \\ \partial_\nu U = \partial_\nu V = 0 & \text{on } \partial\Omega \end{cases}$$

(I) For any ϵ , $\exists \delta(\epsilon) > 0$ s.t. for $1 - \delta < b < 1$, $0 \le c \le 1$, $\epsilon < d_1 < 1/\epsilon$ and $d_2 \ge d_1 + \epsilon$, $(\theta_{d_1}, 0)$ is globally asymp. stable.

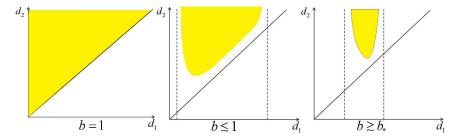
Remark: Interesting that *c* could be *even* bigger than *b* in (I).

(II) For 0 < b, c < 1, $\exists \epsilon > 0$ s.t. if $|d_1 - d_2| < \epsilon$ then \exists unique positive s.s. (\tilde{U}, \tilde{V}) . Moreover, (\tilde{U}, \tilde{V}) is globally asymp. stable; and if $d_1, d_2 \rightarrow d > 0$, then

$$(\tilde{U},\tilde{V}) \rightarrow \frac{1}{1-bc} \begin{pmatrix} 1-c\\ 1-b \end{pmatrix} \theta_d.$$

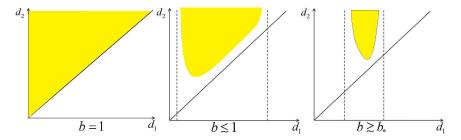
Local stability of $(\theta_{d_1}, 0)$: $b > b_*, 0 \le c \le 1$

Now we vary *b* as a parameter. Then for any $c \in [0, 1]$, Lou obtained the following picture: (the regions shaded yellow represent the (d_1, d_2) for which $(\theta_{d_1}, 0)$ is locally asymp. stable.)



Local stability of $(\theta_{d_1}, 0)$: $b > b_*, 0 \le c \le 1$

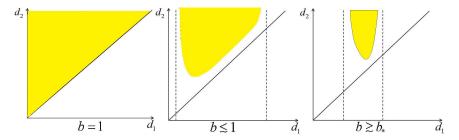
Now we vary *b* as a parameter. Then for any $c \in [0, 1]$, Lou obtained the following picture: (the regions shaded yellow represent the (d_1, d_2) for which $(\theta_{d_1}, 0)$ is locally asymp. stable.)



• As $b \nearrow 1, \Sigma_b \nearrow Q \equiv \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_1 < d_2\}$

Local stability of $(\theta_{d_1}, 0)$: $b > b_*, 0 \le c \le 1$

Now we vary *b* as a parameter. Then for any $c \in [0, 1]$, Lou obtained the following picture: (the regions shaded yellow represent the (d_1, d_2) for which $(\theta_{d_1}, 0)$ is locally asymp. stable.)

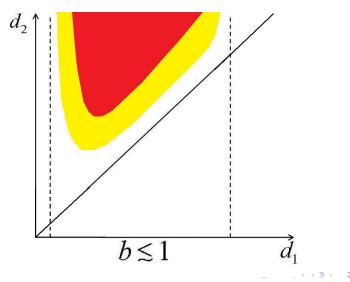


• As $b \nearrow 1, \Sigma_b \nearrow Q \equiv \{(d_1, d_2) \in \mathbb{R}^+ \times \mathbb{R}^+ : d_1 < d_2\}$

For (d₁, d₂) ∈ Q \ Σ_b (i.e. white area in the upper triangular region), there is at least one locally stable co-existence s. s.

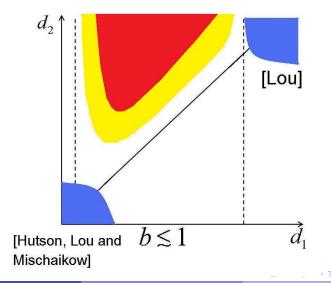
Globally Stable Coexistence S.S.: $b > b_*, 0 \le c \le 1$

The regions shaded blue represent the (d_1, d_2) for which there exists a unique coexistence s.s. which is globally asymp. stable.



Globally Stable Coexistence S.S.: $b > b_*, 0 \le c \le 1$

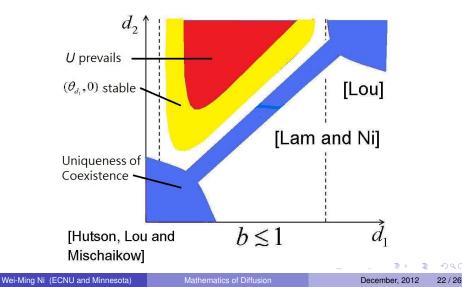
The region shaded blue represent the (d_1, d_2) for which there exists a unique coexistence s.s. which is globally asymp. stable.)



Wei-Ming Ni (ECNU and Minnesota)

Globally Stable Coexistence S.S.: $b > b_*, 0 \le c \le 1$

The region shaded blue represent the (d_1, d_2) for which there exists a unique coexistence s.s. which is globally asymp. stable.)



(I) For $0 < d_1 < d_2$, $\exists \delta > 0$ s.t. for $1 - \delta < b < 1$ and $0 \le c \le 1$, $(\theta_{d_1}, 0)$ is globally asymp. stable.

э.

(I) For $0 < d_1 < d_2$, $\exists \delta > 0$ s.t. for $1 - \delta < b < 1$ and $0 \le c \le 1$, $(\theta_{d_1}, 0)$ is globally asymp. stable. (A simpler version)

(I) For $0 < d_1 < d_2$, $\exists \delta > 0$ s.t. for $1 - \delta < b < 1$ and $0 \le c \le 1$, $(\theta_{d_1}, 0)$ is globally asymp. stable. (A simpler version)

• Fix $d_1 < d_2$, $c \in [0, 1]$, let $b_k \rightarrow 1$ and (U_k, V_k) be coexistence s.s.

(I) For $0 < d_1 < d_2$, $\exists \delta > 0$ s.t. for $1 - \delta < b < 1$ and $0 \le c \le 1$, $(\theta_{d_1}, 0)$ is globally asymp. stable. (A simpler version)

- Fix $d_1 < d_2$, $c \in [0, 1]$, let $b_k \rightarrow 1$ and (U_k, V_k) be coexistence s.s.
- Then by compactness of (U_k, V_k) in C^{2,α} × C^{2,α}, and the non-existence result when b = 1, we must have (U_k, V_k) → one of S = {(θ_{d1}, 0), (0, θ_{d2}) or (0, 0)}.

(I) For $0 < d_1 < d_2$, $\exists \delta > 0$ s.t. for $1 - \delta < b < 1$ and $0 \le c \le 1$, $(\theta_{d_1}, 0)$ is globally asymp. stable. (A simpler version)

- Fix $d_1 < d_2$, $c \in [0, 1]$, let $b_k \rightarrow 1$ and (U_k, V_k) be coexistence s.s.
- Then by compactness of (U_k, V_k) in C^{2,α} × C^{2,α}, and the non-existence result when b = 1, we must have (U_k, V_k) → one of S = {(θ_{d1}, 0), (0, θ_{d2}) or (0, 0)}.
- However, the three semitrivial/trivial solutions are stable with respect to perturbation: the principal eigenvalue of the linearized system at those solutions are non-zero.

(I) For $0 < d_1 < d_2$, $\exists \delta > 0$ s.t. for $1 - \delta < b < 1$ and $0 \le c \le 1$, $(\theta_{d_1}, 0)$ is globally asymp. stable. (A simpler version)

- Fix $d_1 < d_2$, $c \in [0, 1]$, let $b_k \rightarrow 1$ and (U_k, V_k) be coexistence s.s.
- Then by compactness of (U_k, V_k) in C^{2,α} × C^{2,α}, and the non-existence result when b = 1, we must have (U_k, V_k) → one of S = {(θ_{d1}, 0), (0, θ_{d2}) or (0, 0)}.
- However, the three semitrivial/trivial solutions are stable with respect to perturbation: the principal eigenvalue of the linearized system at those solutions are non-zero.
- (Given each semitrivial/trivial solution, there exists a neighborhood independent of b_k so that the semitrivial/trivial solution is the only solution in the neighborhood for all k large.)

(I) For $0 < d_1 < d_2$, $\exists \delta > 0$ s.t. for $1 - \delta < b < 1$ and $0 \le c \le 1$, $(\theta_{d_1}, 0)$ is globally asymp. stable. (A simpler version)

- Fix $d_1 < d_2$, $c \in [0, 1]$, let $b_k \rightarrow 1$ and (U_k, V_k) be coexistence s.s.
- Then by compactness of (U_k, V_k) in C^{2,α} × C^{2,α}, and the non-existence result when b = 1, we must have (U_k, V_k) → one of S = {(θ_{d1}, 0), (0, θ_{d2}) or (0, 0)}.
- However, the three semitrivial/trivial solutions are stable with respect to perturbation: the principal eigenvalue of the linearized system at those solutions are non-zero.
- (Given each semitrivial/trivial solution, there exists a neighborhood independent of b_k so that the semitrivial/trivial solution is the only solution in the neighborhood for all k large.)
- Therefore, we must have (U_k, V_k) ∈ S for all k large. Contradicting the assumption that (U_k, V_k) is a coexistence s.s.

(II) For 0 < b, c < 1, $\exists \epsilon > 0$ s.t. if $|d_1 - d_2| < \epsilon$ then \exists unique positive s.s. (\tilde{U}, \tilde{V}) . Moreover, (\tilde{U}, \tilde{V}) is globally asymp. stable; and if $d_1, d_2 \rightarrow d > 0$, then

$$(\tilde{U},\tilde{V})
ightarrow rac{1}{1-bc} \left(egin{array}{c} 1-c \\ 1-b \end{array}
ight) heta_d.$$

3

イロト イポト イラト イラト

(II) For 0 < b, c < 1, $\exists \epsilon > 0$ s.t. if $|d_1 - d_2| < \epsilon$ then \exists unique positive s.s. (\tilde{U}, \tilde{V}) . Moreover, (\tilde{U}, \tilde{V}) is globally asymp. stable; and if $d_1, d_2 \rightarrow d > 0$, then

$$(\tilde{U},\tilde{V}) \rightarrow \frac{1}{1-bc} \begin{pmatrix} 1-c\\ 1-b \end{pmatrix} heta_d.$$

Set $d_1 = d_2 = d$ and fix $b, c \in (0, 1)$.

• Observe that
$$\frac{1}{1-bc}\begin{pmatrix} 1-c\\ 1-b \end{pmatrix}\theta_d$$
 is a solution.

3

4 3 5 4 3 5 5

(II) For 0 < b, c < 1, $\exists \epsilon > 0$ s.t. if $|d_1 - d_2| < \epsilon$ then \exists unique positive s.s. (\tilde{U}, \tilde{V}) . Moreover, (\tilde{U}, \tilde{V}) is globally asymp. stable; and if $d_1, d_2 \rightarrow d > 0$, then

$$(\tilde{U}, \tilde{V})
ightarrow rac{1}{1-bc} \left(egin{array}{c} 1-c \ 1-b \end{array}
ight) heta_d.$$

Set $d_1 = d_2 = d$ and fix $b, c \in (0, 1)$.

- Observe that $\frac{1}{1-bc}\begin{pmatrix} 1-c\\ 1-b \end{pmatrix}\theta_d$ is a solution.
- Show that if (U_0, V_0) is a solution, then necessarily $(1 b)U_0 = (1 c)V_0$.

3

(II) For 0 < b, c < 1, $\exists \epsilon > 0$ s.t. if $|d_1 - d_2| < \epsilon$ then \exists unique positive s.s. (\tilde{U}, \tilde{V}) . Moreover, (\tilde{U}, \tilde{V}) is globally asymp. stable; and if $d_1, d_2 \rightarrow d > 0$, then

$$(\tilde{U}, \tilde{V})
ightarrow rac{1}{1-bc} \left(egin{array}{c} 1-c \ 1-b \end{array}
ight) heta_d.$$

Set $d_1 = d_2 = d$ and fix $b, c \in (0, 1)$.

- Observe that $\frac{1}{1-bc}\begin{pmatrix} 1-c\\ 1-b \end{pmatrix}\theta_d$ is a solution.
- Show that if (U_0, V_0) is a solution, then necessarily $(1 b)U_0 = (1 c)V_0$.

Now perturb d_1 and d_2 in the same way as in the proof of (I).

Slower diffuser always prevails?

Consider a special case

$$\left\{ \begin{array}{ll} U_t = d_1 \Delta U + U(m(x) - U - bV) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(m(x) - bU - V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial\Omega \times (0, T) \\ U(x, 0) = U_0(x) \ge 0, V(x, 0) = V_0(x) \ge 0 & \text{in } \Omega \end{array} \right.$$

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Slower diffuser always prevails?

Consider a special case

$$\begin{cases} U_t = d_1 \Delta U + U(m(x) - U - bV) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(m(x) - bU - V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial\Omega \times (0, T) \\ U(x, 0) = U_0(x) \ge 0, V(x, 0) = V_0(x) \ge 0 & \text{in } \Omega \end{cases}$$

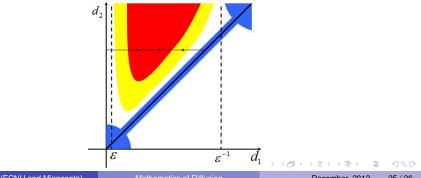
where $b = 1 - \delta$ close to 1. [Lam-Ni] indicates, U does not seem to fare better as d_1 decreases from d_2 to 0.

Slower diffuser always prevails?

Consider a special case

$$\begin{cases} U_t = d_1 \Delta U + U(m(x) - U - bV) & \text{in } \Omega \times (0, T) \\ V_t = d_2 \Delta V + V(m(x) - bU - V) & \text{in } \Omega \times (0, T) \\ \partial_{\nu} U = \partial_{\nu} V = 0 & \text{on } \partial\Omega \times (0, T) \\ U(x, 0) = U_0(x) \ge 0, V(x, 0) = V_0(x) \ge 0 & \text{in } \Omega \end{cases}$$

where $b = 1 - \delta$ close to 1. [Lam-Ni] indicates, U does not seem to fare better as d_1 decreases from d_2 to 0.



Wei-Ming Ni (ECNU and Minnesota)

Conjecture

Finally,

Conjecture [Lou; JDE (2006)]: $(\theta_{d_1}, 0)$ is globally asymp stable for $b > b_*$, $c \in (0, 1)$ and $(d_1, d_2) \in \Sigma_b$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >