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ENVIRONMENTAL STOCHASTICITY

Lest men suspect your tale untrue, Keep probability in view. –John Gay

I fluctuations in temperature, precipitation, etc.

I demographic rates correlated to environmental conditions
I variation predicted to increase in the next century

How do species interactions, population structure, and tempo-
ral fluctuations influence coexistence?
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k interacting species
ni individual states (e.g. size, age, location) for species i
Xi = (Xi1, . . . ,Xini) species i’s abundances
X = (X1, . . . ,Xk) community state (stay in a compact set)
ξ environmental state (in a compact metric space)
Ai(X, ξ) projection matrix for species i (continuous, primitive)

The environment-community dynamic:

ξ1, ξ2, ξ3, . . . ergodic, stationary sequence

Xi
t+1 = Ai(Xt, ξt+1)Xi

t i = 1, . . . , k

What ensures the long-term persistence of the community?

Prior work: Chesson (1982), Ellner (1982), Chesson & Ellner (1984), Ellner
(1989), Hardin et al. (1988), Benaı̈m & S. (2009), S. et al. (2011), reviewed in S.
(2012)
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EXAMPLES

Lt+1 =bAt exp(−κelLt/Vt+1 − κeaAt/Vt+1) exp(ξl
t)

Pt+1 =(1 − µl)Lt exp(ξp
t )

At+1 =(Pt exp(−κpaAt/Vt+1) + (1 − µa)At) exp(ξa
t )

Dennis et al. 1995, Constantino et al. 1997, Henson & Cushing 1997

Spatial Lottery Model:

Xi`
t+1 = (1 − ε)Xi`

t + ε

∑
m dm`ξ

im
t+1Xim

t∑
j,m dm`ξ

jm
t+1Xjm

t

1 ≤ i ≤ k 1 ≤ ` ≤ n

Chesson & Warner 1982, Chesson 1984, 2000
Muko & Iwasa 2000, 2008
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The empirical measure for Xt given X0 = x is

Πx
t =

1
t

t−1∑
s=0

δXs

Πx
t (A) is the fraction of time that X spends in the set A by time t− 1
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An arbitrarily small fraction of time is spent below arbitrarily small densities



Introduction Models and Main Result Applications Finale

The empirical measure for Xt given X0 = x is

Πx
t =

1
t

t−1∑
s=0

δXs

Πx
t (A) is the fraction of time that X spends in the set A by time t− 1

The system is stochastically persistent if for all ε > 0 there exists
δ > 0 such that

lim sup
t→∞

Πx
t

({
‖Xi

t‖ ≤ δ for some i
})
≤ ε

with probability one.

An arbitrarily small fraction of time is spent below arbitrarily small densities
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MAIN RESULT

The (realized) per-capita growth rate of species i given X0 = x is

ri(x) = lim supt→∞
1
t log ‖Ai(Xt−1, ξt) . . .Ai(X0, ξ1)‖

xi > 0 implies ri(x) ≤ 0 with probability one

xi = 0 and ri(x) > 0 implies that i increases when rare

Theorem(Roth & S.) If there exist weights pi > 0 such that∑
i

piri(x) > 0 with probability one

whenever
∏

i ‖xi‖ = 0, then the system stochastically persists

If the community on average increases when rare, then it persists
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LARVAE-PUPAE-ADULT MODEL

Lt+1 =bAt exp(−κelLt/Vt+1 − κeaAt/Vt+1) exp(ξl
t)

Pt+1 =(1 − µl)Lt exp(ξp
t )

At+1 =(Pt exp(−κpaAt/Vt+1) + (1 − µa)At) exp(ξa
t )

Dennis et al. 1995, Constantino et al. 1997, Henson & Cushing 1997

Persistence requires that r1(0) > 0

Theorem(Roth & S.) There exists a critical birth rate bcrit > 0 s.t.
Extinction: If b < bcrit, then Xt = (Lt,Pt,At) converges almost

surely to (0, 0, 0) as t→∞.
Stochastic persistence: If b > bcrit, then the LPA model

stochastically persists
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Spatial Lottery Model:

Xi`
t+1 = (1 − ε)Xi`

t + ε

∑
m dm`ξ

im
t+1Xim

t∑
j,m dm`ξ

jm
t+1Xjm

t

1 ≤ i ≤ k 1 ≤ ` ≤ n

Chesson & Warner 1982, Chesson 1984, 2000
Muko & Iwasa 2000, 2008

(0,0,0)

(1,1,1)
Say...2 species and 3 patches

persistent if r1(0, 0, 0) > 0 and r2(1, 1, 1) > 0

“mutual invasability”
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∑
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slow dispersers: r1(0, . . . , 0) = max` E
[
log
(

(1− ε) + ε
ξ1`

t
ξ2`

t

)]
“if each species has some region where it can locally coexist with
or exclude the other, then for sufficiently low dispersal rates the
population will coexist” – Cantrell, Cosner (1998) JMB
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Spatial Lottery Model:

Xi`
t+1 = (1 − ε)Xi`

t + ε

∑
m dm`ξ

im
t+1Xim

t∑
j,m dm`ξ

jm
t+1Xjm

t

1 ≤ i ≤ k 1 ≤ ` ≤ n

Chesson & Warner 1982, Chesson 1984, 2000
Muko & Iwasa 2000, 2008

A slower disperser can coexist with a faster disperser that is
competitively dominant everywhere –Cantrell, Cosner 1998

for a long-lived, slower disperser (species 1) occurs if

E[ξ1`
t ] >

1

E
[

1
1
k
∑

m ξ
2m
t

]
︸ ︷︷ ︸

Harmonic mean

for some `
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Rock-Paper-Scissor Lottery Model:

Xir
t+1 = (1 − ε)Xir

t + ε

∑
s dsrξ

ij,s
t+1Xjs

t Xis
t∑

j,s dsrξ
j`,s
t+1Xjs

t X`s
t

i = 1 rock, i = 2 paper, i = 3 scissor

Each strategy has an equilibrium with
a positive stochastic growth rate r+i
a negative stochastic growth rate r−i

Persistence requires that
∏

i r+i >
∏

i |r
−
i |

Product of invasion rates exceeds product of exclusion rates
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CONCLUDING REMARKS

I For structured interacting populations in a fluctuating
environment,

Xi
t+1 = Ai(Xt, ξt+1)Xi

t i = 1, . . . , k

there is a coexistence criterion:∑
i

piri(x) > 0 with probability one when
∏

i ‖xi‖ = 0

If the community on average increases when rare, then the community persists

I This criterion applies to models with overcompensating
density dependence, corresponds to mutual invasibility for
two species models, and can be more subtle for higher
dimensional communities.
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FUTURE DIRECTIONS

I similar results for continuous-time processes e.g SDEs with
Steve Evans, Alexandru Henning (Berkeley)

I exclusion criterion (with G. Roth)∑
i

piri(x) < 0 with probability one if
∏

i ‖xi‖ = 0

If the community on average decreases when rare, then it is extinction prone

I “weak noise, weakly structured” approximations (ala
Chesson, Tuljapurkar) of ri(x) to gain further analytical
insights into the role of population structure and temporal
fluctuations on coexistence.
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