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Stability

Stability of a Steady State Solution

. . . . du
For a continuous-time evolution equation pri F (A, u), where u € X (state space),

A € R, a steady state solution ux is (or just stable) if for
any € > 0, then there exists § > 0 such that when ||u(0) — u«||x < §, then
[lu(t) — us||x < eforall t >0 and tlim [|u(t) — us||x = 0. Otherwise uy is

— 00
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Basic Result: If all the eigenvalues of linearized operator D, F(\, us) have negative
real parts, then u, is locally asymptotically stable.
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real parts, then u, is locally asymptotically stable.

Bifurcation (change of stability): if when the parameter A\ changes from A« — ¢ to
Ax + €, the steady state u.(\) changes from stable to unstable; and other special
solutions (steady states, periodic orbits) may emerge from the known solution

(O, 1 (A):
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Stability of a Steady State Solution

. . . . du
For a continuous-time evolution equation pri F (A, u), where u € X (state space),

A € R, a steady state solution ux is (or just stable) if for
any € > 0, then there exists § > 0 such that when ||u(0) — u«||x < §, then
[lu(t) — us||x < eforall t >0 and tlim [|u(t) — us||x = 0. Otherwise uy is

— 00

Basic Result: If all the eigenvalues of linearized operator D, F(\, us) have negative
real parts, then u, is locally asymptotically stable.

Bifurcation (change of stability): if when the parameter A\ changes from A« — ¢ to
Ax + €, the steady state u.(\) changes from stable to unstable; and other special
solutions (steady states, periodic orbits) may emerge from the known solution

(A ux ().

Steady State Bifurcation (transcritical/pitchfolk): if 0 is an eigenvalue of Dy F(A«, us).
Hopf Bifurcation: if £ki is a pair of eigenvalues of DyF (A«, ux).
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ODE model:

FZZf(A’y)’ yeR" f:RxR" = R"

Equilibrium: y = yo so that (Ao, y0) = 0
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ODE model:

dit’ =f(\y), y€ER" f:RxR" 5 R"
Equilibrium: y = yp so that f(Xo,y0) =0

Jacobian Matrix: J = f,(Xo, o) is an n X n matrix
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Ordinary Differential Equations

d
ODE model: di; =f(\y), y€R" f:RxR"5R"
: y = yo so that (Ao, ) =0

Jacobian Matrix: J = f,(Xo, yo0) is an n X n matrix

Characteristic equation:
P(\) = Det(M — J) = A"+ ag A"+ A" "2 - d a3, 1A+ ap

Conclusion
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Routh-Hurwitz criterion: complicated for general n
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Ordinary Differential Equations

d
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ODE model: d}; =f(\y), y€R" f:RxR"5R"
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Jacobian Matrix: J = f,(Xo, yo0) is an n X n matrix

Characteristic equation:
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Ordinary Differential Equations

d
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n > 5: check books
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Alan Turing (1912-1954)

THE CHEMICAL BASIS OF MORPHOGENESIS
By A. M. TURING, F-RS. Universty of Marchestr

(Rucived 9 November 1051—Revied 15 March 19532)

v suggesed hat  sysiem of chemica sabstances, alled morphogens,restin ogether snd

by which the genes of  ygote
o The theoey dom not make any.

matics, soume biology, and some elementary chemistry. Since readers cannot be expected 1o be
expert i al of these su A
{ext-books, but whose s would make the papes dificult reading,

1. A wobeL ov TiE ExBRYO, MoRmmoGENs
Tn this section a mathematical model of the growing embryo will be deseribed. This model
will be a simplification and an idealization, and conscquently 2 falsification. 1t s to be
hoped that the features retained for discussion are those of greatest importance in the
present state of knowledge

The model takes two sightly different forms. Tn one of them the cel theory is recognized
bt the cells are idealized into geometrical points. In the other the matter of the organism
s imagined 3 continuously distributed. The cells are not, however, completely ignored,
for various physical and physico-chemical characteristcs of the matter 25 a whole are
‘assumed to have values appropriate to the cellular matter.

With cither of the models one proceeds as with a physical theory and defines an cntity
called *the sate of the system’. One then describes how that state s o be determined from
the state at & moment very shortly before. With either model the description of the state
consist of two parts, the mechanical and the chemical. The mechanical part of the state
describes the positions, masses, velocities and elastic properties of the cells, and the forces
between them. In the continuous form of the theory essentially the same information is
civen in the form of the stres, velocitv. densitv and elasticity of the matter, The chemical

[Turing, 1952] The Chemical Basis of Morphogenesis.

Phil. Trans. Royal Society London B

Conclusion
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Turing's idea

Kinetic (K): % = f(u,v), % = g(u,v)

sup = diAu+ f(u,v), vi = dbAv + g(u, v)

Here u(x, t) and v(x, t) are the density functions of two chemicals
(morphogen) or species which interact or react

@ A constant solution u(t,x) = wo, v(t,x) = v can be a stable solution of
(K), but an unstable solution of . Thus the instability is induced by
diffusion. (Diffusion is generally a stabilizing force.)

@ On the other hand, there must be stable non-constant equilibrium
solutions, or stable non-equilibrium behavior, which have more
complicated spatial-temporal structure.
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Turing bifurcation in 1-D problem

For simplicity, we assume that n =1 and Q = (0, ¢~).

ur = dux + f(u, v),

vi = vk + g(u, v),

ux(t,0) = ux(t, €m) = vi(t,0) = vx(t, €m) =0,
u(0, x) = up(x), v(0,x) = vp(x),

Equilibrium point: f(up, vo) = g(uo, v0) =0

Linearized equation:

¢\ _ [ déxx fu fy
L(w>7(wxx)+(gu 8v

Advection

x € (0,4m), t >0,
x € (0,¢47), t >0,
t>0,
x € (0, £r).

)(3)

Conclusion
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Turing bifurcation

()= ) (e &) (0)
(2)=2(5)=(7)

Conclusion

Fourier theory: for an eigenfunction (¢, %) for eigenvalue i, only one (a;, b;) # 0 and

all other (ax, bx) =0 for k # j, and (a;, b;) satisfies (where p; = j2/€2, the

eigenvalues of —¢"' = ug¢ with no-flux boundary condition)
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Turing bifurcation
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Fourier theory: for an eigenfunction (¢, %) for eigenvalue i, only one (a;, b;) # 0 and

all other (ax, bx) =0 for k # j, and (a;, b;) satisfies (where p; = j2/€2, the
eigenvalues of —¢"' = ug¢ with no-flux boundary condition)

L aj _ _d“j + fu fy — aj )
I\ b &u —Hj + & b;
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Turing bifurcation

()= ) (e &) (0)
(2)=2(5)=(7)

Fourier theory: for an eigenfunction (¢, %) for eigenvalue i, only one (a;, b;) # 0 and

all other (ax, bx) =0 for k # j, and (a;, b;) satisfies (where p; = j2/€2, the
eigenvalues of —¢"' = ug¢ with no-flux boundary condition)

L aj _ _d“j + fu fy — aj )
I\ b &u —Hj + & b;

: fu+gv <0, and f,g, — fugu > 0.
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Turing bifurcation
¢ _ d(z)xx fu fv (z)
L(w)_<wxx)+<gu gv)(w)
1) > a; Jmx
(2)-%(5)=(7)
Jj=0
Fourier theory: for an eigenfunction (¢, %) for eigenvalue i, only one (a;, b;) # 0 and

all other (ax, bx) =0 for k # j, and (a;, b;) satisfies (where p; = j2/€2, the
eigenvalues of —¢"' = ug¢ with no-flux boundary condition)

L aj _ _d“j + fu fy — aj )
I\ b &u —Hj + & b;
: fu+gv <0, and f,g, — fugu > 0.

Since Tr(L;) = —(d 4+ 1)pj + fu + gv < 0, then Hopf bifurcation cannot occur here.

Advection Conclusion
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Turing bifurcation

¢ _ d(z)xx fu fv (z)
L(w)_<wxx)+<gu gv)(w)
1) > a; Jmx
(2)-%(5)=(7)
Jj=0
Fourier theory: for an eigenfunction (¢, %) for eigenvalue i, only one (a;, b;) # 0 and

all other (ax, bx) =0 for k # j, and (a;, b;) satisfies (where p; = j2/€2, the
eigenvalues of —¢"' = ug¢ with no-flux boundary condition)

L aj _ _d“j + fu fy - aj )
I\ b &u —Hj + & b;
: fu+gv <0, and f,g, — fugu > 0.

Since Tr(L;) = —(d 4+ 1)pj + fu + gv < 0, then Hopf bifurcation cannot occur here.

If Det(L;) = d,uJQ. — wj(fu + dgv) + (fugv — fugu) = 0 is satisfied, then f, + dg, > 0.
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Turing bifurcation

()= ) (e &) (0)
(2)=2(5)=(7)

Fourier theory: for an eigenfunction (¢, %) for eigenvalue i, only one (a;, b;) # 0 and
all other (ax, bx) =0 for k # j, and (a;, b;) satisfies (where p; = j2/€2, the
eigenvalues of —¢"' = ug¢ with no-flux boundary condition)

L aj _ —d/.Lj + fu fy — aj )
I\ b &u —Hj + & b;

: fu+gv <0, and f,g, — fugu > 0.
Since Tr(L;) = —(d 4+ 1)pj + fu + gv < 0, then Hopf bifurcation cannot occur here.
If Det(L;) = d,uJQ. — wj(fu + dgv) + (fugv — fugu) = 0 is satisfied, then f, + dg, > 0.
Condition for Turing instability: f, >0, g, <0,0< d <1,

Hj fu — (fugv — fvgu)

0<d<
wi(p —&v)

= d; (bifurcation point)
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Bifurcation of Nontrivial Steady State

Theorem: Suppose that f(ug, vo) = g(up, vo) =0, and at (up, vo),
fu > 0 (activator), gv < 0 (inhibitor);
Dy = u8v — v8u >0 and fu+gv < 0.

fu — (fugy — A
if o = fu = (fug —Frgu) dj for any k # J,
i (ke — &v)
1 = d; I1s a bifurcation point where a continuum of non-trivial solutions o
i) d dJ bif i poi h i Y of ivial soluti f

{duxx—i-f(u,v) =0, v +g(u,v)=0, x € (0, ¢7),
ux(0) = ux(4m) = vx(0) = vx(4m) =0,

bifurcates from the line of trivial solutions (d, ug, vp);

(ii) The continuum X is either unbounded in the space of (d, u, v), or it connects to
another (dx, uo, v);

(iii) X is locally a curve near (d;, up, vp) in form of

(d, u,v) = (d(s), up + sAcos(jx) + o(s), vo + sB cos(jx) + o(s)), |s| < &, and d’(0) =0
thus the bifurcation is of pitchfork type (d”(0) can be computed in term of D3(f, g)).
[Rabinowitz, 1971, JFA],

[Shi-Wang, 2009, JDE] [Shi, 2009, Frontier Math. China]
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Example: Brusselator

[Prigogine-Lefever, 1968]

ur = du + a— (b+ 1Du + v, x € (0,4m), t >0,
Vi = Vax + bu — 12V, x € (0,¢47), t >0,
ux(t,0) = ux(t, €m) = vi(t,0) = vx(t,4n) =0, t>0,
u(0, x) = up(x), v(0,x) = w(x), x € (0, ¢r).
. . b—1 &
Unique constant steady state: (a, b/a), Jacobian J = ( p )

Assume 1 < b< a®+1. f, >0, g, <0, D; = f,g, — fugu >0and f, + g, <O0.

b—1)u; — a°
Bifurcation points: d; = % where 1; =2/
(wj + @*)u
Hj —
2(pj + 1)y

Result: if d is large, then no pattern; if d is small, then a nonconstant steady state

Choose a=1 and b= 1.5. Then d; = is the bifurcation point.

emerges.
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Conclusion

Simulation of non-constant steady state (Turing pattern)

<
=
T s 4 x
£ 3
2
H 15 8
4
g 12 &
g
H 11
os .
i u
oo
os
g
s
f
<
gs :
§ x
£ 3
2
24 4 8
2 X
&
82 5
E
ol
o

Spacex 070 Timet

Figure : Numerical simulation for Brusselator model. Here a =1,
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Steady state pattern: (u(x, t), v(x, t)) = (u(x), v(x)).

Time-oscillatory pattern: (u(x,t+ T),v(x,t+ T)) = (u(x, t), v(x, t))

«O>» «4F» « =>»

<

v

DA
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Time-periodic patterns

Steady state pattern: (u(x, t), v(x,t)) = (u(x), v(x)).
Time-oscillatory pattern: (u(x,t+ T),v(x,t+ T)) = (u(x, t), v(x, t))
Six stable states

Initial condition ! Il n WHU_HH
MY
Stationary waves with

/X]’ ~ ——r — Uniform, stationary Uniform, oscillating
- /3\/ extramely short wavelength

vi

[\ v
Both morphogens
diffuse and react #
Ll 1 N AVAYA

with each other

A

Oscillatory cases Osclllatory cases Stationary waves with
with extremely short with finite finite wavelength
wavalength wavelength (Turing pattern)

(Figure from: [Kondo-Miura, 2010, Science])
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Time-periodic patterns

Steady state pattern: (u(x, t), v(x,t)) = (u(x), v(x)).
Time-oscillatory pattern: (u(x,t+ T),v(x,t+ T)) = (u(x, t), v(x, t))
A Six stable states

Initial condition ! Il n

Conclusion

Uniform, stationary Uniform, oscillating Stationary waves with
extremely short wavelength
Both morphogens & v L
\
diffuse and react /,ﬂ
with each other L s
Oscillatory cases Oscillatory cases Stationary waves with
with extremely short with finite finite wavelengtn
wavelength wavelength (Turing pattern)

(Figure from: [Kondo-Miura, 2010, Science])

[Turing, 1952]: “The two remaining possibilities (oscillatory cases) can
three or more morphogens.”

only occur with

Conjecture?: If (up, vp) is a constant steady state for a 2-D RD system which is stable
for ODE dynamics, then the diffusive system cannot have (stable) periodic orbits.

: If (uwo, vo) is a constant steady state for a 2-D RD system which is unstable
for ODE dynamics, then the diffusive system can have (a lot of) periodic orbits.

[Yi-Wei-Shi, 2009, JDE]



Diffusion: random movement of cells




Diffusion: random movement of cells

Chemotaxis: directional movement of cells due to attraction/repulsion to chemicals

DA
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Chemotaxis model

Diffusion: random movement of cells
Chemotaxis: directional movement of cells due to attraction/repulsion to chemicals

[Keller-Segel, 1970, JTB]

ur=Au—V-(xuVv), x€Q,t>0,

vi = Av+au — Bv, x €Q,t>0,
Ju ov

— = —=0, €00, t>0.
ov ov x

@ u(x,t): cell density, v(x,t): concentration of chemical; x >0, >0, 8 > 0,
@ QCR"(n>1)is a bounded connected domain with a smooth boundary 9Q
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Chemotaxis model

Diffusion: random movement of cells
Chemotaxis: directional movement of cells due to attraction/repulsion to chemicals

[Keller-Segel, 1970, JTB]

ur=Au—V-(xuVv), x€Q,t>0,

vi = Av+au — Bv, x €Q,t>0,
Ju ov

— = —=0, €00, t>0.
ov ov x

@ u(x,t): cell density, v(x,t): concentration of chemical; x >0, >0, 8 > 0,
@ QCR"(n>1)is a bounded connected domain with a smooth boundary 9Q

[Wang-Xu, 2012, JMB] For x > xx, the system has a non-constant steady state
solution. For Q = (0, L), it is shown that the steady state solutions bifurcated from
the first bifurcation point are monotone ones, and they display spike patterns.

Earlier work: [Schaff, 1985, TAMS], [Lin-Ni-Takagi, 1988, JDE] and many others
There is no periodic-pattern: Lyapunov functional:

L(u,v) = oz/Q(qug u—u—xuv)+ % /Q (\Vv|2 + ﬁvz)



Attractive and Repulsive Chemotaxis

chemo-attractant

Attractive Chemotaxis: move in the direction of increasing concentration of

DA
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Attractive and Repulsive Chemotaxis

Attractive Chemotaxis: move in the direction of increasing concentration of
chemo-attractant

: move in the direction of decreasing concentration of
chemo-repellent
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Attractive and Repulsive Chemotaxis

Attractive Chemotaxis: move in the direction of increasing concentration of
chemo-attractant

: move in the direction of decreasing concentration of
chemo-repellent

[Painter-Hillen, 2002] [Wolansky, 2002] [Horstmann, 2011]
[Liu-Wang, 2012] [Tao-Wang, 2013] [Liu-Shi-Wang, preprint]

ug =Au—V - (xuVv)+ V- (EuVw), x€eQt>0
vi = Av + au — Bv, x e, t>0,
wr = Aw + yu — dw, x€Q,t>0,

Ju ov ow
— =—=_—=0, oQ,t > 0.
ov ov x € >

ov
u(x,0) = up(x), v(x,0) = vp(x), w(x,0) = wp(x), x € Q,

@ u(x,t): cell density, v(x,t): concentration of chemo-attractant, w(x, t):
concentration of chemo-repellent

@ x>0,£>0,a>0,8>0,v>0,>0
@ QCR"(n>1)is a bounded connected domain with a smooth boundary 9Q



Stability Diffusion Chemotaxis Advection Conclusion

Equilibrium and linearization

ur=Au—V-(xuVv)+ V- (fuVw), xeQ,t>0,
ve = Av + au — By, x €, t>0,

wr = Aw + yu — dw, x€Q,t>0,
Qu_ov_ow_, €o0,t>0
== = % .
ov ov ov ’ ’

1
Jo u(x, t)dx = [q uo(x)dx. Let o= ﬁ/ u(x, t)dx be fixed. Define v = i/,
Q

w = ~y0/d, then (T, v, w) is a constant equilibrium.
Linearized equation

A¢ — xuAY + Euldp = pd, x € Q,

AP+ ap — B = py, x€Q
Ap +v¢ — dp = pep, x €4,
o(x)dx =0, x € Q,

g _ov_ oo _,

o ov  ov x € 0.
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Eigenvalue Problem

Fourier theory yields a matrix (here A\, is eigenvalue of —A)
—An XU\ =&t
A, = e} —An—p 0 .
o' 0 —An— 96
Characteristic polynomial

P(r) = 1® + a2(x, An)p? + a1(x; An)s + a0 (X An),

where

aQ(X, )\n) = 3)\n + 6 + 67
a10x, An) = 322 + [2(8 + 8) + (&y — ax)T] A + 06,

a0(x; An) = A3+ [B+ 6 + (&7 — ax)T]A; + [85 + (BEy — Sax) T An.

Routh-Hurwitz: boundary of instability

ao(x, An) =0, T(x,An) = a2(X; An)ar(x, An) — a0(X, An) = 0.

steady state bifurcation curve: S = {(x,p) € R : ao(x,p) =0}
Hopf bifurcation curve: H = {(x,p) € RZ: T(x,p) =0}

Conclusion
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Figure : Graph of ao(x,p) =0 (x = xs(p)) and T(x,p) =0

(x = xn(p)). Here the horizontal axis is x and the vertical axis is p, and
the dashed horizontal lines are p = A\, = n? for n = 1,2, 3 (assuming that
Q = (0,7) a one-dimensional spatial domain). Parameters used:
v=a=¢=243 =1 for both plots; (left) 5 =4, & = 3; (right) 5 = 16,
u=20.
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Hopf Bifurcation

[Liu-Shi-Wang, 2013, preprint]
Theorem. Let (&, v, w) be a positive constant equilibrium point and define

* 2 2p*
A* =: A*(B,0) = w where p* is the unique positive root of the

(B —d)p
equation 4p3® + (46 + B)p? = §23. If parameters satisfy

B> 6 and &yo < A¥,

then for some appropriately chosen domain 2, there exists a Hopf bifurcation point
X = XJH > 0 for the system. More precisely,

@ The system has a unique one-parameter family {p(s) : 0 < s < ¢} of nontrivial
periodic orbits near (x, u,v, w) = (xj’-"7 0, v, w). More precisely, there exists
e > 0 and C* function s — (U;(s), Tj(s), xj(s)) from s € (—¢,¢) to
W?2P(Q,R3) x (0,00) x R satisfying

(U;(0), Tj(0), x;(0)) = (@, v, W), 2m/vo, x'),
and
U(s, x, t) = (T, v, W) + sy;(x) [V; exp(ivot) + V; exp(—ivot)] + o(s),

where

v = /333 + [2(8 4 9) + (€ — ax})alAn + 38,

and Vj is an eigenvector satisfying A;V; = ivgVj;
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Hopf Bifurcation

@ for 0 < |s| <, p(s) = p(Uj(s)) = {Uj(s, -, t) : t € R} is a nontrivial periodic
orbit of the system with period T;(s);

@ if 0 < s1 < s <e, then p(s1) # p(s2);
@ there exists 7 > 0 such that if the system has a nontrivial periodic solution

U(x, t) of period T for some x € R with

27
Ix—x/ <, ‘T——
10}

<7, max_|U(x,t)—(&,v,w)| <,
tER,xEN

then x = x;(s) and U(x,t) = Uj(s, x, t+6) for some s € (0,¢) and some 6 € R.
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Hopf Bifurcation

@ for 0 < |s| <, p(s) = p(Uj(s)) = {Uj(s, -, t) : t € R} is a nontrivial periodic
orbit of the system with period T;(s);

@ if 0 < s1 < s <e, then p(s1) # p(s2);
@ there exists 7 > 0 such that if the system has a nontrivial periodic solution

U(x, t) of period T for some x € R with

27
Ix—x/ <, ‘T——
10}

<7, max_|U(x,t)—(&,v,w)| <,
tER,xEN

then x = x;(s) and U(x,t) = Uj(s, x, t+6) for some s € (0,¢) and some 6 € R.

Lesson: when the attractive chemotaxis is strong enough (x large), a time-periodic
pattern can emerge if all other parameters and domain are carefully chosen. In this
case, Lyapunov functional is not possible.

For 2-D reaction-diffusion system (without chemotaxis), Hopf bifurcation cannot
occur. Indeed [Turing, 1952] had already pointed out that time-periodic patterns can
only occur if there are three or more chemicals involved in the reaction. Periodic
patterns here are caused by chemotaxis.

Hopf bifurcation for quasilinear parabolic systems:
[Amann, 1991, book chapter] [Da Prado-Lunardi, 1985, AIHP] [Simonett, 1995, DIE]
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Simulation of periodic patterns

1

15 15 2
Spacex 0 Space x

Figure : (a) A spatio-temporal periodic ripping pattern formation of
solution component u of the system in an interval (0, 3); (b) A three
dimensional view of spatio-temporal periodic ripping pattern of solution
component u. The parameters values are:
y=a=§=0=1,0=16,u=20. The initial conditions are set as a
small random perturbation of the homogeneous steady state
(20,20/16, 20).
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Simulation of periodic patterns
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Figure : A visualization of the time-periodic solution (u, v, w) at fixed
spatial location x = 2. The parameters values and the initial conditions
are the same as before.
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Simulation of steady state patterns

u(x,t)

Timet oo Space x Time t

Space x

Figure : Numerical simulations of cell density v for different value of ,
where the steady state bifurcation occurs. (a) x = 8.71; (b) x = 14.71.
Other parameter valuesare a =1,8=1,v=1,0=1,£ =1,u=1. The
initial conditions are set as a small random perturbation of the
homogeneous steady state (1,1,1).
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Ripple pattern in myxobacteria
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Figure : (left) Numerical simulation of attraction-repulsion Keller-Segel

Conclusion

system; (right): ripple pattern in experiment [Welch-Kaiser, 2001, PNAS]

Question: existence of traveling wave or traveling pulse of attraction-repulsion

Keller-Segel system.
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Bifurcation from Grassland to Desert

ow @:an—mn—l—An, x € Q.

ow 2,
— =a—-w-—wn —
ot . K x| )
w(x, y, t):concentration of water; n(x, y, t): concentration of plant,

Q: a two-dimensional domain.

a > 0: rainfall; —w: evaporation; —wn?: water uptake by plants; water flows downhill
at speed «; wn?: plant growth; —mn: plant loss

[Klausmeier, 1999, Science]
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PDE Model

[Zhou-Shi, 2012] preprint
We simplify it to 1-D domain (0, L)

ur — aux = f(u) — ug(v), 0<x<L, t>0,
vi — dvi = up(v) — h(v), 0<x<L, t>0,
u(0, t) = u(L, t), t>0,

v(0,t) = v(L,t), vx(0,t) = w(L,t), t>0,

v(x,0) = vp(x), u(x,0) = uo(x), 0<x<L,

We seek for solution which also satisfies ux(0, t) = ux(L, t).
Local existence: can be proved through standard way using semigroup theory

Stability and bifurcation: suppose there is a unique constant steady state solution.
Then what is the stability?
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Eigenvalue problem

A’ + ap + by = A, 0<x<m,
Dy" + cé + dip = Ay, 0<x<m,
$(0) = ¢(7), ¢'(0) = ¢'(n),
¥(0) = 9(m), ¢'(0) =4’ (7).

Let an eigenfunction be

¢ = Z sin(2nx) f2 cos(2nx)),

Y= Z(g% sin(2nx) + g2 cos(2nx)).

n=0
Then (£, 87,12, g2) satisfies A, (£, g7, 2, 82)" = A(f}, gp, f2,82)7
a b —2nA 0
A c d—4n?D 0 0
n= 2nA 0 a b
0 0 c d — 4D

, where

Conclusion
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Eigenvalue problem

Ad' + ag + by = A, 0<x<m,
Dy + ¢ + dip = Ay, 0<x<m,
#(0) = ¢(w), ¢'(0) = ¢'(w), ¥(0) = ¥(r), ¢'(0) = (7).

Characteristic equation:

A —2BaA3 + (B2 +2Cp + 4n?A)X% + (—2Bn Cn — 8knn?A)X + C2 + 4k2n°A = 0.
where kn = d — 4Dn?, B, = a+ kn, Ch = bc — aks and A = A2,

Lemma.

(i) If B, < 0 and C, > 0 for all n € NU {0}, then for A =0, all eigenvalues have
negative real parts.

(ii) Assuming that B, < 0 and C, > 0 for all n € NU {0} (which can be achieved if
a<0,a+d<0,and ad — bc > 0). Then for n € N such that 1 < n < /d/(4D) (so
d > 4D), there exists

/\* — Br21 C"
n 4akpn?’
such that all eigenvalues of A have negative real parts if A < A}, and A has exactly
one pair of eigenvalues with positive real part when A € (A%, A} +¢).

Question: Hopf bifurcation theorem
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Another approach

[Sherratt, 2005, JMB]
A¢' + a¢ + by = g,
Dy +c¢ + dy = My,

Solution form: (¢, ) = (f, g)exp(—i2nx), ( a+£2nA 3 ) ( ; ) :A( ; )

characteristic equation:
X2 4 (4m°D — a — d — i2nA) + (d — 4n®>D)(i2nA + a) — bc = 0, or
A2 — (Bn — i2nAi)X + kn(a + i2nA) — bc = 0, where k, = d — 4Dn?, B, = a + k.
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Another approach
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A¢' + a¢ + by = g,
Dy +c¢ + dy = My,

Solution form: (¢, ) = (f, g)exp(—i2nx), ( a+£2nA Z ) ( ; ) :A( ; )

characteristic equation:
X2 4 (4m°D — a — d — i2nA) + (d — 4n®>D)(i2nA + a) — bc = 0, or
A2 — (Bn — i2nAi)X + kn(a + i2nA) — bc = 0, where k, = d — 4Dn?, B, = a + k.

Indeed, this is equivalent to our approach:
A — 2By A3 + (B2 +2Cp + 4n?A)X2 + (—2BnCn — 8knn? A)X + C2 + 4kZ2nA
= (A2 — (Bn — i2nAi)\ + kn(a + i2nA) — bc)(A2 — (Bn + i2nAi)\ + kn(a — i2nA) — bc
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Another approach

[Sherratt, 2005, JMB]
A¢' + a¢ + by = g,
Dy +c¢ + dy = My,

Solution form: (¢, ) = (f, g)exp(—i2nx), ( a+£2nA Z ) ( ; ) :A( ; )

characteristic equation:
X2 4 (4m°D — a — d — i2nA) + (d — 4n®>D)(i2nA + a) — bc = 0, or
A2 — (Bn — i2nAi)X + kn(a + i2nA) — bc = 0, where k, = d — 4Dn?, B, = a + k.

Indeed, this is equivalent to our approach:
A — 2By A3 + (B2 +2Cp + 4n?A)X2 + (—2BnCn — 8knn? A)X + C2 + 4kZ2nA
= (A2 — (Bn — i2nAi)\ + kn(a + i2nA) — bc)(A2 — (Bn + i2nAi)\ + kn(a — i2nA) — bc

Advantages and differences of our approach:

1. Our polynomial has real-value coefficients, so we have 2 pairs of conjugate complex
root, not 2 non-conjugate complex roots;

2. We can use Routh-Hurwitz criterion for Hopf bifurcation analysis;

3. [Sherratt-Lord, 2007], [Sherratt, 2010] considered the traveling wave train solutions,
and solutions are obtained from Hopf bifurcation of ODE system with wave speed c.
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Simulation of Klausmeier model
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Figure : Numerical simulation for u; = yu, + a — u — uv?,

Vi = Vyx + uv? — mv with periodic boundary condition. Here a = 3,
m=1, Q=(0,10). Upper: v = —15; Lower: v = —20.
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Conclusions

@ Different diffusion rates produce nontrivial steady state patterns. [Turing, 1952]

@ For diffusive systems (may with chemotaxis), usually 3 chemical species are
needed for time-periodic patterns. In the minimal chemotactic system, a large
attractive chemotactic force generates time-periodic patterns. Steady state
patterns are still possible.
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Conclusions

@ Different diffusion rates produce nontrivial steady state patterns. [Turing, 1952]

@ For diffusive systems (may with chemotaxis), usually 3 chemical species are
needed for time-periodic patterns. In the minimal chemotactic system, a large
attractive chemotactic force generates time-periodic patterns. Steady state
patterns are still possible.

@ For advective-diffusive systems in form

ur = Aux + f(u) — ¢(u)vP, 0<x<L, t>0,
vi = Dvix + ¢(u)vP — h(v), 0<x<L, t>0,
u(0, t) = u(L, t), ux(0,t) = ux(L,t), t >0,
v(0,t) = v(L, t), vx(0,t) = vx(L,t), t >0,

a large advection can generate time-periodic patterns. Nontrivial steady state
patterns are not known yet (all washed away?)
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Conclusions

@ Different diffusion rates produce nontrivial steady state patterns. [Turing, 1952]

@ For diffusive systems (may with chemotaxis), usually 3 chemical species are
needed for time-periodic patterns. In the minimal chemotactic system, a large
attractive chemotactic force generates time-periodic patterns. Steady state
patterns are still possible.

@ For advective-diffusive systems in form

ur = Aux + f(u) — ¢(u)vP, 0<x<L, t>0,
vi = Dvix + ¢(u)vP — h(v), 0<x<L, t>0,
u(0, t) = u(L, t), ux(0,t) = ux(L,t), t >0,
v(0,t) = v(L, t), vx(0,t) = vx(L,t), t >0,

a large advection can generate time-periodic patterns. Nontrivial steady state
patterns are not known yet (all washed away?)
@ [Kim-Shi-Zhou, preprint] For a system in form

ur = Diu + Arux + f(u) — p(u)vP,  0<x<L, t>0,
vi = Dovie + Aovx + ¢(u)vP — h(v), 0<x<L, t>0,
u(0,t) = u(L, t), ux(0,t) = ux(L,t), t>0,
v(0,t) = v(L, t), vx(0,t) = vx(L,t), t>0,

time-periodic patterns can arise via a Hopf bifurcation if |A1] is large enough.
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