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Stability of a Steady State Solution

For a continuous-time evolution equation
du

dt
= F (λ, u), where u ∈ X (state space),

λ ∈ R, a steady state solution u∗ is locally asymptotically stable (or just stable) if for
any ǫ > 0, then there exists δ > 0 such that when ||u(0)− u∗||X < δ, then
||u(t)− u∗||X < ǫ for all t > 0 and lim

t→∞
||u(t)− u∗||X = 0. Otherwise u∗ is unstable.
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Stability of a Steady State Solution

For a continuous-time evolution equation
du

dt
= F (λ, u), where u ∈ X (state space),

λ ∈ R, a steady state solution u∗ is locally asymptotically stable (or just stable) if for
any ǫ > 0, then there exists δ > 0 such that when ||u(0)− u∗||X < δ, then
||u(t)− u∗||X < ǫ for all t > 0 and lim

t→∞
||u(t)− u∗||X = 0. Otherwise u∗ is unstable.

Basic Result: If all the eigenvalues of linearized operator DuF (λ, u∗) have negative
real parts, then u∗ is locally asymptotically stable.

Bifurcation (change of stability): if when the parameter λ changes from λ∗ − ε to
λ∗ + ε, the steady state u∗(λ) changes from stable to unstable; and other special
solutions (steady states, periodic orbits) may emerge from the known solution
(λ, u∗(λ)).

Steady State Bifurcation (transcritical/pitchfolk): if 0 is an eigenvalue of DuF (λ∗, u∗).
Hopf Bifurcation: if ±ki is a pair of eigenvalues of DuF (λ∗, u∗).
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Ordinary Differential Equations

ODE model:
dy

dt
= f (λ, y), y ∈ Rn, f : R× Rn → Rn

Equilibrium: y = y0 so that f (λ0, y0) = 0

Jacobian Matrix: J = fy (λ0, y0) is an n × n matrix

Characteristic equation:
P(λ) = Det(λI − J) = λn + a1λn−1 + a2λn−2 + · · ·+ an−1λ+ an

Routh-Hurwitz criterion: complicated for general n

n = 1: λ+ a1 = 0, a1 > 0

n = 2: λ2 + a1λ+ a2 = 0, a1 > 0, a2 > 0

n = 3: λ3 + a1λ2 + a2λ+ a3 = 0, a1 > 0, a2 >
a3

a1
, a3 > 0

n = 4: λ4 + a1λ3 + a2λ2 + a3λ+ a4 = 0, a1 > 0, a2 >
a23 + a21a4

a1a3
, a3 > 0, a4 > 0

n ≥ 5: check books
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Alan Turing (1912-1954)

[Turing, 1952] The Chemical Basis of Morphogenesis.
Phil. Trans. Royal Society London B
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Turing’s idea

Kinetic (K):
du

dt
= f (u, v),

dv

dt
= g(u, v)

Reaction-diffusion system (R-D): ut = d1∆u + f (u, v), vt = d2∆v + g(u, v)

Here u(x , t) and v(x , t) are the density functions of two chemicals
(morphogen) or species which interact or react

A constant solution u(t, x) = u0, v(t, x) = v0 can be a stable solution of
(K), but an unstable solution of (R-D). Thus the instability is induced by
diffusion. (Diffusion is generally a stabilizing force.)

On the other hand, there must be stable non-constant equilibrium
solutions, or stable non-equilibrium behavior, which have more
complicated spatial-temporal structure.
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Turing bifurcation in 1-D problem

For simplicity, we assume that n = 1 and Ω = (0, ℓπ).



















ut = duxx + f (u, v), x ∈ (0, ℓπ), t > 0,

vt = vxx + g(u, v), x ∈ (0, ℓπ), t > 0,

ux (t, 0) = ux (t, ℓπ) = vx (t, 0) = vx (t, ℓπ) = 0, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, ℓπ).

Equilibrium point: f (u0, v0) = g(u0, v0) = 0

Linearized equation:

L

(

φ
ψ

)

=

(

dφxx
ψxx

)

+

(

fu fv
gu gv

)(

φ
ψ

)
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)(

φ
ψ

)

(

φ
ψ

)

=
∞
∑

j=0

(

aj
bj

)

cos

(

jπx

ℓ

)

.

Fourier theory: for an eigenfunction (φ, ψ) for eigenvalue µ, only one (aj , bj ) 6= 0 and
all other (ak , bk ) = 0 for k 6= j , and (aj , bj ) satisfies (where µj = j2/ℓ2, the
eigenvalues of −φ′′ = µφ with no-flux boundary condition)
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If Det(Lj ) = dµ2j − µj (fu + dgv ) + (fugv − fvgu) = 0 is satisfied, then fu + dgv > 0.
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Since Tr(Lj ) = −(d + 1)µj + fu + gv < 0, then Hopf bifurcation cannot occur here.

If Det(Lj ) = dµ2j − µj (fu + dgv ) + (fugv − fvgu) = 0 is satisfied, then fu + dgv > 0.

Condition for Turing instability: fu > 0, gv < 0, 0 < d < 1,

0 < d <
µj fu − (fugv − fvgu)

µj (µj − gv )
≡ dj (bifurcation point)
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Bifurcation of Nontrivial Steady State

Theorem: Suppose that f (u0, v0) = g(u0, v0) = 0, and at (u0, v0),
(A) fu > 0 (activator), gv < 0 (inhibitor);
(B) D1 = fugv − fvgu > 0 and fu + gv < 0.

If dk ≡
µk fu − (fugv − fvgu)

µk(µk − gv )
6= dj for any k 6= j ,

(i) d = dj is a bifurcation point where a continuum Σ of non-trivial solutions of

{

duxx + f (u, v) = 0, vxx + g(u, v) = 0, x ∈ (0, ℓπ),

ux (0) = ux (ℓπ) = vx (0) = vx (ℓπ) = 0,

bifurcates from the line of trivial solutions (d, u0, v0);
(ii) The continuum Σ is either unbounded in the space of (d, u, v), or it connects to
another (dk , u0, v0);
(iii) Σ is locally a curve near (dj , u0, v0) in form of
(d, u, v) = (d(s), u0 + sA cos(jx)+ o(s), v0 + sB cos(jx)+ o(s)), |s| < δ, and d ′(0) = 0
thus the bifurcation is of pitchfork type (d ′′(0) can be computed in term of D3(f , g)).

[Rabinowitz, 1971, JFA],

[Shi-Wang, 2009, JDE] [Shi, 2009, Frontier Math. China]
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Example: Brusselator

[Prigogine-Lefever, 1968]



















ut = duxx + a− (b + 1)u + u2v , x ∈ (0, ℓπ), t > 0,

vt = vxx + bu − u2v , x ∈ (0, ℓπ), t > 0,

ux (t, 0) = ux (t, ℓπ) = vx (t, 0) = vx(t, ℓπ) = 0, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, ℓπ).

Unique constant steady state: (a, b/a), Jacobian J =

(

b − 1 a2

−b −a2

)

.

Assume 1 < b < a2 + 1. fu > 0, gv < 0, D1 = fugv − fvgu > 0 and fu + gv < 0.

Bifurcation points: dj =
(b − 1)µj − a2

(µj + a2)µj
where µj = j2/ℓ2.

Choose a = 1 and b = 1.5. Then dj =
µj − 1

2(µj + 1)µj
is the bifurcation point.

Result: if d is large, then no pattern; if d is small, then a nonconstant steady state

emerges.
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Simulation of non-constant steady state (Turing pattern)

Figure : Numerical simulation for Brusselator model. Here a = 1,
b = 1.5, Ω = (0, 10). Upper: d = 0.05; Lower: d = 0.01.
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Time-periodic patterns

Steady state pattern: (u(x , t), v(x , t)) = (u(x), v(x)).
Time-oscillatory pattern: (u(x , t + T ), v(x , t + T )) = (u(x , t), v(x , t))
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Time-periodic patterns

Steady state pattern: (u(x , t), v(x , t)) = (u(x), v(x)).
Time-oscillatory pattern: (u(x , t + T ), v(x , t + T )) = (u(x , t), v(x , t))

(Figure from: [Kondo-Miura, 2010, Science])

[Turing, 1952]: “The two remaining possibilities (oscillatory cases) can only occur with
three or more morphogens.”

Conjecture?: If (u0, v0) is a constant steady state for a 2-D RD system which is stable
for ODE dynamics, then the diffusive system cannot have (stable) periodic orbits.
Known: If (u0, v0) is a constant steady state for a 2-D RD system which is unstable
for ODE dynamics, then the diffusive system can have (a lot of) periodic orbits.
[Yi-Wei-Shi, 2009, JDE]
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Chemotaxis model

Diffusion: random movement of cells
Chemotaxis: directional movement of cells due to attraction/repulsion to chemicals

[Keller-Segel, 1970, JTB]















ut = ∆u −∇ · (χu∇v), x ∈ Ω, t > 0,

vt = ∆v + αu − βv , x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0.

u(x , t): cell density, v(x , t): concentration of chemical; χ ≥ 0, α > 0, β > 0,

Ω ⊂ Rn (n ≥ 1) is a bounded connected domain with a smooth boundary ∂Ω
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Chemotaxis model

Diffusion: random movement of cells
Chemotaxis: directional movement of cells due to attraction/repulsion to chemicals

[Keller-Segel, 1970, JTB]















ut = ∆u −∇ · (χu∇v), x ∈ Ω, t > 0,

vt = ∆v + αu − βv , x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0.

u(x , t): cell density, v(x , t): concentration of chemical; χ ≥ 0, α > 0, β > 0,

Ω ⊂ Rn (n ≥ 1) is a bounded connected domain with a smooth boundary ∂Ω

[Wang-Xu, 2012, JMB] For χ > χ∗, the system has a non-constant steady state
solution. For Ω = (0, L), it is shown that the steady state solutions bifurcated from
the first bifurcation point are monotone ones, and they display spike patterns.

Earlier work: [Schaff, 1985, TAMS], [Lin-Ni-Takagi, 1988, JDE] and many others

There is no periodic-pattern: Lyapunov functional:

L(u, v) = α

∫

Ω
(u log u − u − χuv) +

χ

2

∫

Ω

(

|∇v |2 + βv2
)
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Attractive Chemotaxis: move in the direction of increasing concentration of
chemo-attractant
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Attractive and Repulsive Chemotaxis

Attractive Chemotaxis: move in the direction of increasing concentration of
chemo-attractant
Repulsive Chemotaxis: move in the direction of decreasing concentration of
chemo-repellent

[Painter-Hillen, 2002] [Wolansky, 2002] [Horstmann, 2011]
[Liu-Wang, 2012] [Tao-Wang, 2013] [Liu-Shi-Wang, preprint]



































ut = ∆u −∇ · (χu∇v) +∇ · (ξu∇w), x ∈ Ω, t > 0

vt = ∆v + αu − βv , x ∈ Ω, t > 0,

wt = ∆w + γu − δw , x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0.

u(x , 0) = u0(x), v(x , 0) = v0(x),w(x , 0) = w0(x), x ∈ Ω,

u(x , t): cell density, v(x , t): concentration of chemo-attractant, w(x , t):
concentration of chemo-repellent

χ ≥ 0, ξ ≥ 0, α > 0, β > 0, γ > 0, δ > 0

Ω ⊂ Rn (n ≥ 1) is a bounded connected domain with a smooth boundary ∂Ω
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Equilibrium and linearization























ut = ∆u −∇ · (χu∇v) +∇ · (ξu∇w), x ∈ Ω, t > 0,

vt = ∆v + αu − βv , x ∈ Ω, t > 0,

wt = ∆w + γu − δw , x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0.

∫

Ω u(x , t)dx =
∫

Ω u0(x)dx . Let ū =
1

|Ω|

∫

Ω
u(x , t)dx be fixed. Define v̄ = αū/β,

w̄ = γū/δ, then (ū, v̄ , w̄) is a constant equilibrium.
Linearized equation







































∆φ− χū∆ψ + ξū∆ϕ = µφ, x ∈ Ω,

∆ψ + αφ− βψ = µψ, x ∈ Ω

∆ϕ+ γφ− δϕ = µϕ, x ∈ Ω,
∫

Ω
φ(x)dx = 0, x ∈ Ω,

∂φ

∂ν
=
∂ψ

∂ν
=
∂ϕ

∂ν
= 0, x ∈ ∂Ω.
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Eigenvalue Problem

Fourier theory yields a matrix (here λn is eigenvalue of −∆)

An =





−λn χūλn −ξūλn
α −λn − β 0
γ 0 −λn − δ



 .

Characteristic polynomial

P(µ) = µ3 + a2(χ, λn)µ
2 + a1(χ, λn)µ+ a0(χ, λn),

where

a2(χ, λn) = 3λn + β + δ,

a1(χ, λn) = 3λ2n + [2(β + δ) + (ξγ − αχ)ū]λn + δβ,

a0(χ, λn) = λ3n + [β + δ + (ξγ − αχ)ū]λ2n + [βδ + (βξγ − δαχ)ū]λn.

Routh-Hurwitz: boundary of instability

a0(χ, λn) = 0, T (χ, λn) = a2(χ, λn)a1(χ, λn)− a0(χ, λn) = 0.

steady state bifurcation curve: S = {(χ, p) ∈ R2
+ : a0(χ, p) = 0}

Hopf bifurcation curve: H = {(χ, p) ∈ R
2
+ : T (χ, p) = 0}.
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Figure : Graph of a0(χ, p) = 0 (χ = χS(p)) and T (χ, p) = 0
(χ = χH(p)). Here the horizontal axis is χ and the vertical axis is p, and
the dashed horizontal lines are p = λn = n2 for n = 1, 2, 3 (assuming that
Ω = (0, π) a one-dimensional spatial domain). Parameters used:
γ = α = ξ = δ = 1 for both plots; (left) β = 4, ū = 3; (right) β = 16,
ū = 20.



Stability Diffusion Chemotaxis Advection Conclusion

Hopf Bifurcation

[Liu-Shi-Wang, 2013, preprint]
Theorem. Let (ū, v̄ , w̄) be a positive constant equilibrium point and define

A∗ =: A∗(β, δ) =
(p∗ + δ)2(2p∗ + β)

(β − δ)p∗
, where p∗ is the unique positive root of the

equation 4p3 + (4δ + β)p2 = δ2β. If parameters satisfy

β > δ and ξγū < A∗,

then for some appropriately chosen domain Ω, there exists a Hopf bifurcation point
χ = χH

j
> 0 for the system. More precisely,

The system has a unique one-parameter family {ρ(s) : 0 < s < ε} of nontrivial
periodic orbits near (χ, u, v ,w) = (χH

j , ū, v̄ , w̄). More precisely, there exists

ε > 0 and C∞ function s 7→ (Uj (s),Tj (s), χj (s)) from s ∈ (−ε, ε) to
W 2,p(Ω,R3) × (0,∞)× R satisfying

(Uj (0),Tj (0), χj (0)) = ((ū, v̄ , w̄), 2π/ν0, χ
H
j ),

and

Uj (s, x , t) = (ū, v̄ , w̄) + syj(x)
[

Vj exp(iν0t) + V̄j exp(−iν0t)
]

+ o(s),

where

ν0 =
√

3λ2n + [2(β + δ) + (ξγ − αχH
j
)ū]λn + δβ,

and Vj is an eigenvector satisfying AjVj = iν0Vj ;
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Hopf Bifurcation

for 0 < |s| < ε, ρ(s) = ρ(Uj (s)) = {Uj (s, ·, t) : t ∈ R} is a nontrivial periodic
orbit of the system with period Tj (s);

if 0 < s1 < s2 < ε, then ρ(s1) 6= ρ(s2);

there exists τ > 0 such that if the system has a nontrivial periodic solution
Ũ(x , t) of period T for some χ ∈ R with

|χ− χH
j | < τ,

∣

∣

∣

∣

T −
2π

ν0

∣

∣

∣

∣

< τ, max
t∈R,x∈Ω

∣

∣

∣Ũ(x , t) − (ū, v̄ , w̄)
∣

∣

∣ < τ,

then χ = χj (s) and Ũ(x , t) = Uj (s, x , t+ θ) for some s ∈ (0, ε) and some θ ∈ R.



Stability Diffusion Chemotaxis Advection Conclusion

Hopf Bifurcation

for 0 < |s| < ε, ρ(s) = ρ(Uj (s)) = {Uj (s, ·, t) : t ∈ R} is a nontrivial periodic
orbit of the system with period Tj (s);

if 0 < s1 < s2 < ε, then ρ(s1) 6= ρ(s2);

there exists τ > 0 such that if the system has a nontrivial periodic solution
Ũ(x , t) of period T for some χ ∈ R with

|χ− χH
j | < τ,

∣

∣

∣

∣

T −
2π

ν0

∣

∣

∣

∣

< τ, max
t∈R,x∈Ω

∣

∣

∣Ũ(x , t) − (ū, v̄ , w̄)
∣

∣

∣ < τ,

then χ = χj (s) and Ũ(x , t) = Uj (s, x , t+ θ) for some s ∈ (0, ε) and some θ ∈ R.

Lesson: when the attractive chemotaxis is strong enough (χ large), a time-periodic
pattern can emerge if all other parameters and domain are carefully chosen. In this
case, Lyapunov functional is not possible.

For 2-D reaction-diffusion system (without chemotaxis), Hopf bifurcation cannot
occur. Indeed [Turing, 1952] had already pointed out that time-periodic patterns can
only occur if there are three or more chemicals involved in the reaction. Periodic
patterns here are caused by chemotaxis.

Hopf bifurcation for quasilinear parabolic systems:
[Amann, 1991, book chapter] [Da Prado-Lunardi, 1985, AIHP] [Simonett, 1995, DIE]



Stability Diffusion Chemotaxis Advection Conclusion

Simulation of periodic patterns

Figure : (a) A spatio-temporal periodic ripping pattern formation of
solution component u of the system in an interval (0, 3); (b) A three
dimensional view of spatio-temporal periodic ripping pattern of solution
component u. The parameters values are:
γ = α = ξ = δ = 1, β = 16, ū = 20. The initial conditions are set as a
small random perturbation of the homogeneous steady state
(20, 20/16, 20).
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Simulation of periodic patterns
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Figure : A visualization of the time-periodic solution (u, v ,w) at fixed
spatial location x = 2. The parameters values and the initial conditions
are the same as before.
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Simulation of steady state patterns

Figure : Numerical simulations of cell density u for different value of χ,
where the steady state bifurcation occurs. (a) χ = 8.71; (b) χ = 14.71.
Other parameter values are α = 1, β = 1, γ = 1, δ = 1, ξ = 1, ū = 1. The
initial conditions are set as a small random perturbation of the
homogeneous steady state (1, 1, 1).
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Ripple pattern in myxobacteria

Figure : (left) Numerical simulation of attraction-repulsion Keller-Segel
system; (right): ripple pattern in experiment [Welch-Kaiser, 2001, PNAS]

Question: existence of traveling wave or traveling pulse of attraction-repulsion
Keller-Segel system.
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Bifurcation from Grassland to Desert

∂w

∂t
= a− w − wn2 + γ

∂w

∂x
,
∂n

∂t
= wn2 −mn +∆n, x ∈ Ω.

w(x , y , t):concentration of water; n(x , y , t): concentration of plant,
Ω: a two-dimensional domain.
a > 0: rainfall; −w : evaporation; −wn2: water uptake by plants; water flows downhill
at speed γ; wn2: plant growth; −mn: plant loss
[Klausmeier, 1999, Science]
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PDE Model

[Zhou-Shi, 2012] preprint
We simplify it to 1-D domain (0, L)































ut − aux = f (u) − uφ(v), 0 < x < L, t > 0,

vt − dvxx = uφ(v) − h(v), 0 < x < L, t > 0,

u(0, t) = u(L, t), t > 0,

v(0, t) = v(L, t), vx (0, t) = vx(L, t), t > 0,

v(x , 0) = v0(x), u(x , 0) = u0(x), 0 ≤ x ≤ L,

We seek for solution which also satisfies ux (0, t) = ux (L, t).

Local existence: can be proved through standard way using semigroup theory

Stability and bifurcation: suppose there is a unique constant steady state solution.
Then what is the stability?
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Eigenvalue problem























Aφ′ + aφ+ bψ = λφ, 0 < x < π,

Dψ′′ + cφ+ dψ = λψ, 0 < x < π,

φ(0) = φ(π), φ′(0) = φ′(π),

ψ(0) = ψ(π), ψ′(0) = ψ′(π).

Let an eigenfunction be

φ =
∞
∑

n=0

(f 1n sin(2nx) + f 2n cos(2nx)),

ψ =
∞
∑

n=0

(g1
n sin(2nx) + g2

n cos(2nx)).

Then (f 1n , g
1
n , f

2
n , g

2
n ) satisfies An(f 1n , g

1
n , f

2
n , g

2
n )

T = λ(f 1n , g
1
n , f

2
n , g

2
n )

T , where

An =









a b −2nA 0
c d − 4n2D 0 0

2nA 0 a b

0 0 c d − 4n2D









.
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Eigenvalue problem











Aφ′ + aφ+ bψ = λφ, 0 < x < π,

Dψ′′ + cφ+ dψ = λψ, 0 < x < π,

φ(0) = φ(π), φ′(0) = φ′(π), ψ(0) = ψ(π), ψ′(0) = ψ′(π).

Characteristic equation:
λ4 − 2Bnλ3 + (B2

n + 2Cn + 4n2Λ)λ2 + (−2BnCn − 8knn2Λ)λ+ C2
n + 4k2nn

2Λ = 0.
where kn = d − 4Dn2, Bn = a+ kn, Cn = bc − akn and Λ = A2.
Lemma.
(i) If Bn < 0 and Cn > 0 for all n ∈ N ∪ {0}, then for A = 0, all eigenvalues have
negative real parts.
(ii) Assuming that Bn < 0 and Cn > 0 for all n ∈ N ∪ {0} (which can be achieved if

a < 0, a+ d < 0, and ad − bc > 0). Then for n ∈ N such that 1 ≤ n ≤
√

d/(4D) (so
d > 4D), there exists

Λ∗

n = −
B2
nCn

4aknn2
,

such that all eigenvalues of A have negative real parts if Λ < Λ∗
n , and A has exactly

one pair of eigenvalues with positive real part when Λ ∈ (Λ∗
n ,Λ

∗
n + ε).

Question: Hopf bifurcation theorem
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Another approach

[Sherratt, 2005, JMB]
{

Aφ′ + aφ+ bψ = λφ,

Dψ′′ + cφ+ dψ = λψ,

Solution form: (φ, ψ) = (f , g)exp(−i2nx),

(

a+ i2nA b

c d

)(

f

g

)

= λ

(

f

g

)

characteristic equation:
λ2 + (4n2D − a− d − i2nA) + (d − 4n2D)(i2nA+ a)− bc = 0, or
λ2 − (Bn − i2nAi)λ+ kn(a+ i2nA)− bc = 0, where kn = d − 4Dn2, Bn = a+ kn.
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Solution form: (φ, ψ) = (f , g)exp(−i2nx),
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g

)
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(
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g

)
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λ2 + (4n2D − a− d − i2nA) + (d − 4n2D)(i2nA+ a)− bc = 0, or
λ2 − (Bn − i2nAi)λ+ kn(a+ i2nA)− bc = 0, where kn = d − 4Dn2, Bn = a+ kn.

Indeed, this is equivalent to our approach:
λ4 − 2Bnλ3 + (B2

n + 2Cn + 4n2Λ)λ2 + (−2BnCn − 8knn2Λ)λ+ C2
n + 4k2nn

2Λ
= (λ2 − (Bn − i2nAi)λ+ kn(a+ i2nA)− bc)(λ2 − (Bn + i2nAi)λ+ kn(a− i2nA)− bc
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Another approach

[Sherratt, 2005, JMB]
{

Aφ′ + aφ+ bψ = λφ,

Dψ′′ + cφ+ dψ = λψ,

Solution form: (φ, ψ) = (f , g)exp(−i2nx),

(

a+ i2nA b

c d

)(

f

g

)

= λ

(

f

g

)

characteristic equation:
λ2 + (4n2D − a− d − i2nA) + (d − 4n2D)(i2nA+ a)− bc = 0, or
λ2 − (Bn − i2nAi)λ+ kn(a+ i2nA)− bc = 0, where kn = d − 4Dn2, Bn = a+ kn.

Indeed, this is equivalent to our approach:
λ4 − 2Bnλ3 + (B2

n + 2Cn + 4n2Λ)λ2 + (−2BnCn − 8knn2Λ)λ+ C2
n + 4k2nn

2Λ
= (λ2 − (Bn − i2nAi)λ+ kn(a+ i2nA)− bc)(λ2 − (Bn + i2nAi)λ+ kn(a− i2nA)− bc

Advantages and differences of our approach:
1. Our polynomial has real-value coefficients, so we have 2 pairs of conjugate complex
root, not 2 non-conjugate complex roots;
2. We can use Routh-Hurwitz criterion for Hopf bifurcation analysis;
3. [Sherratt-Lord, 2007], [Sherratt, 2010] considered the traveling wave train solutions,
and solutions are obtained from Hopf bifurcation of ODE system with wave speed c.
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Simulation of Klausmeier model

Figure : Numerical simulation for ut = γux + a − u − uv2,
vt = vxx + uv2

−mv with periodic boundary condition. Here a = 3,
m = 1, Ω = (0, 10). Upper: γ = −15; Lower: γ = −20.
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Conclusions

Different diffusion rates produce nontrivial steady state patterns. [Turing, 1952]
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For diffusive systems (may with chemotaxis), usually 3 chemical species are
needed for time-periodic patterns. In the minimal chemotactic system, a large
attractive chemotactic force generates time-periodic patterns. Steady state
patterns are still possible.
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Conclusions

Different diffusion rates produce nontrivial steady state patterns. [Turing, 1952]

For diffusive systems (may with chemotaxis), usually 3 chemical species are
needed for time-periodic patterns. In the minimal chemotactic system, a large
attractive chemotactic force generates time-periodic patterns. Steady state
patterns are still possible.

For advective-diffusive systems in form



















ut = Aux + f (u) − φ(u)vp , 0 < x < L, t > 0,

vt = Dvxx + φ(u)vp − h(v), 0 < x < L, t > 0,

u(0, t) = u(L, t), ux (0, t) = ux (L, t), t > 0,

v(0, t) = v(L, t), vx(0, t) = vx (L, t), t > 0,

a large advection can generate time-periodic patterns. Nontrivial steady state
patterns are not known yet (all washed away?)
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Conclusions

Different diffusion rates produce nontrivial steady state patterns. [Turing, 1952]

For diffusive systems (may with chemotaxis), usually 3 chemical species are
needed for time-periodic patterns. In the minimal chemotactic system, a large
attractive chemotactic force generates time-periodic patterns. Steady state
patterns are still possible.

For advective-diffusive systems in form



















ut = Aux + f (u) − φ(u)vp , 0 < x < L, t > 0,

vt = Dvxx + φ(u)vp − h(v), 0 < x < L, t > 0,

u(0, t) = u(L, t), ux (0, t) = ux (L, t), t > 0,

v(0, t) = v(L, t), vx(0, t) = vx (L, t), t > 0,

a large advection can generate time-periodic patterns. Nontrivial steady state
patterns are not known yet (all washed away?)

[Kim-Shi-Zhou, preprint] For a system in form



















ut = D1uxx + A1ux + f (u) − φ(u)vp , 0 < x < L, t > 0,

vt = D2vxx + A2vx + φ(u)vp − h(v), 0 < x < L, t > 0,

u(0, t) = u(L, t), ux (0, t) = ux (L, t), t > 0,

v(0, t) = v(L, t), vx (0, t) = vx(L, t), t > 0,

time-periodic patterns can arise via a Hopf bifurcation if |A1| is large enough.
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