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A motivation example

To study the spatial spread of rabies among foxes, Murray, Stanley
and Brown (1986) proposed the following model:

∂E

∂t
= βIS − σE −

[
b + (a− b)

N

K

]
E,

∂I

∂t
=

∂

∂x

(
D

∂I

∂x

)
+ σE − αI −

[
b + (a− b)

N

K

]
I,

∂S

∂t
= (a− b)S

(
1− N

K

)
− βIS,

(1.1)

where S is the density of susceptible foxes, E is the density of
infected but non-infectious foxes, I is the density of rabid foxes,
N = S + E + I is the total fox population.
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D is the diffusion coefficient, a is the birth rate, b is the intrinsic
death rate, and K is the environmental carrying capacity, β is the
disease transmission coefficient, σ is the per capita rate of infected
foxes becoming infectious, α is the disease-induced death rate of
rabid fox, and x is the one dimensional space variable. The term
(a− b)N/K represents the death rate due to depletion of the food
supply by all foxes. Moreover, a > b is assumed to ensure
sustainable population size.

For simplicity, we choose Ω = (0, 1) and impose the Neumann
boundary conditions for I:

∂I

∂x

∣∣∣
x=0

=
∂I

∂x

∣∣∣
x=1

= 0. (1.2)

We further assume that D(x) ≥ D0, ∀x ∈ [0, 1], for some constant
D0 > 0, β(x) and α(x) are nonnegative continuous functions on
[0, 1] with β(x) 6≡ 0.
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Linearize system (1.1) at the disease-free steady sate (0, 0,K), we
obtain the following equations for E and I:

∂E

∂t
= −(σ + a)E + β(x)KI,

∂I

∂t
=

d

dx

(
D(x)

dI

dx

)
+ σE − (α(x) + a)I,

dI

dx

∣∣∣
x=0

=
dI

dx

∣∣∣
x=1

= 0.

(1.3)

Note that (1.3) is cooperative and hence, admits the comparison
principle. However, the solution maps of (1.3) are not compact
due to the lack of diffusion term in the E equation.

Let E(t, x) = eλtE(x) and I(t, x) = eλtI(x), we have the
following eigenvalue problem:
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− (σ + a)E + β(x)KI = λE, x ∈ (0, 1),
d

dx

(
D(x)

dI

dx

)
+ σE − (α(x) + a)I = λI, x ∈ (0, 1),

dI

dx

∣∣∣
x=0

=
dI

dx

∣∣∣
x=1

= 0.

(1.4)

Question 1: Does the eigenvalue problem (1.4) have a principal
eigenvalue? How can we determine the stability of (0, 0,K) for the
nonlinear system (1.1)?

Note that we cannot use the Krein-Rutman theorem.

Question 2: How can we introduce and compute the basic
reproduction number R0 for system (1.1)?

Xiaoqiang Zhao, Memorial University of Newfoundland
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Basic Reproduction Number R0:

By definition, the basic reproduction number R0 is the expected
number of secondary cases produced, in a completely susceptible
population, by a typical infective individual.

Diekmann, Heesterbeek and Metz (1990): Introduced next
generation matrixes (operators).

van den Driessche and Watmough (2002): A computation formula
of R0 for autonomous compartmental models of ODEs.

Bacaer and Guernaoui (2006): Introduced an operator on the
space of periodic functions.

Wang and Zhao (2008): Periodic compartmental models of ODEs.

Many calculations of R0 for various autonomous and periodic
epidemic models....

Xiaoqiang Zhao, Memorial University of Newfoundland
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Allen, Bolker, Lou, and Nevai (2008): An SIS epidemic
reaction-diffusion model.

Thieme (2009): Spectral bound and reproduction number for the
infinite-dimensional population structure and time heterogeneity.

Wang and Zhao (2011): Introduced the next infection operator for
a nonlocal and time-delayed reaction-diffusion model of dengue
fever.

Lou and Zhao (2011): A nonlocal reaction-diffusion malaria model.

Mckenzie, Jin, Jacobsen, and Lewis (2012): An
advection-diffusion-reaction population model.

Peng and Zhao (2012): A periodic reaction-diffusion SIS epidemic
model.
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Our purpose

1. To develop the theory of the principal eigenvalue for an elliptic
eigenvalue problem associated with a linear parabolic cooperative
system with some zero diffusion coefficients.

2. To establish the basic reproduction number and its computation
formulae for reaction-diffusion epidemic models with
compartmental structure.

Xiaoqiang Zhao, Memorial University of Newfoundland
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The principal eigenvalue

Let Ω be a domain in Rl with the smooth boundary ∂Ω, and ν be
the unit normal vector on ∂Ω. For a given integer k > 0, let
X = C(Ω, Rk) and X+ = C(Ω, Rk

+). Set uK = (u1, · · · , uk)
T and

∇ · (dK(x)∇uK) = diag (∇ · (d1(x)∇u1), · · · ,∇ · (dk(x)∇uk)) .

Let M(x) be a continuous k × k matrix-valued function of x ∈ Ω.
We consider the following elliptic eigenvalue problem

∇ · (dK(x)∇uK) + M(x)uK = λuK , x ∈ Ω,

∂ui

∂ν
= 0, ∀ 1 ≤ i ≤ k with di > 0, x ∈ ∂Ω.

(2.1)

For convenience, we set L(φ)(x) = ∇ · (dK(x)∇φ(x)), and let M
denote the multiplication operator defined by
M(φ)(x) = M(x)φ(x).

Xiaoqiang Zhao, Memorial University of Newfoundland
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Without loss of generality, we assume that

(D) There exists a number d0 > 0 and an integer 1 ≤ i1 < k such
that di(x) ≥ d0, ∀x ∈ Ω, 1 ≤ i ≤ i1, and
di1+i(x) = 0, ∀x ∈ Ω, 1 ≤ i ≤ i2 := k − i1.

Let Y1 = C(Ω, Ri1) and Y2 = C(Ω, Ri2). We split the cooperative
matrix M(x) into

M(x) =
(

M11(x) M12(x)
M21(x) M22(x)

)
,

where M11 is an i1 × i1 matrix and M22 is an i2 × i2 matrix. Set

ui1 = (u1, · · · , ui1)
T , ui2 = (ui1+1, · · · , uk)T ,

∇ · (di1(x)∇ui1) = diag (∇ · (d1(x)∇u1), · · · ,∇ · (di1(x)∇ui1)) .

Xiaoqiang Zhao, Memorial University of Newfoundland



Introduction The principal eigenvalue The basic reproduction number An application

Let Q(t) be the solution semigroup on X associated with the
linear parabolic system

∂ui1

∂t
= ∇ · (di1(x)∇ui1) + M11(x)ui1 + M12(x)ui2 ,

∂ui2

∂t
= M21(x)ui1 + M22(x)ui2 ,

∂ui1

∂ν
= 0, t > 0, x ∈ ∂Ω.

(2.2)

It follows that Q(t) is a positive C0-semigroup on X, and its
generator B can be written as

B =
(

L1 + M11 M12

M21 M22

)
,

where L1(ui1)(x) := ∇ · (di1(x)∇ui1).

Xiaoqiang Zhao, Memorial University of Newfoundland
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Let T2(t)φ2(x) = eM22(x)tφ2(x). It then follows that

(λI −M22)−1φ2 =
∫ ∞

0
e−λtT2(t)φ2dt, ∀λ > s(M22), φ2 ∈ Y2.

Thus, we can define an one-parameter family of linear operators:

Lλ = L1 + M11 + M12(λI −M22)−1M21, ∀λ > s(M22).

Theorem 2.1 Let (D) hold and assume that M(x) is cooperative
for all x ∈ Ω and for any λ > s(M22), there exists some xλ ∈ Ω
such that M11(xλ) + M12(λI −M22)−1M21(xλ) is irreducible. If
there exist λ0 > s(M22) and φ0 > 0 in Y1 such that
Lλ0φ0 ≥ λ0φ0, then the following statements are valid:

(i) s(B) is a geometrically simple eigenvalue of (2.1) with a
positive eigenvector.

(ii) s(B) is the unique λ ∈ (s(M22) ,∞) with s(Lλ) = λ.

(iii) s(B) has the same sign as s(L0) provided that s(M22) < 0.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Outline of the proof

For any λ > s(M22), let Tλ(t) be the semigroup generated by Lλ

and define µ(λ) := s(Lλ).
Step 1. Prove that µ(λ) = λ has a unique solution λ∗ ≥ λ0, and
that λ∗ is an eigenvalue of B with a positive eigenvector, and
hence, s(B) ≥ λ∗ and s(B) ∈ σ(B).
Step 2. Prove that λI −B is semi-Fredholm for all λ > λ∗.

Step 3. Prove that s(B) = λ∗ by a way of contradiction and a
preliminary result on semi-Fredholm operators.

Remark 2.1 Theorem 2.1 is still valid if the condition
Lλ0φ0 ≥ λ0φ0 is replaced with a weaker assumption that
u(t, x) := eλ0tφ0(x) is a sub-solution of the integral form of the
linear system ut = Lλ0u. This is because we only need these
conditions to guarantee µ(λ0) ≥ λ0 in the proof of Theorem 2.1.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Corollary 2.1 Let (D) hold and assume that M(x) is cooperative
for all x ∈ Ω and M11(x0) is irreducible for some x0 ∈ Ω. If
s(L1 + M11) > s(M22), then three statements in Theorem 2.1
hold true.

Remark 2.2 If we replace −L1 with uniformly elliptic operators of
second order and use Dirichlet or Robin type boundary conditions
in (2.1), then Theorem 2.1, Remark 2.1, and Corollary 2.1 are still
valid.

Remark 2.3 If we replace −L1 with spatially periodic and uniformly
elliptic operators of second order and use the periodic boundary
condition in (2.1) with Ω = R, then Theorems 2.1, Remark 2.1,
and Corollary 2.1 are still valid.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Basic reproduction number R0

Consider the reaction-diffusion epidemic model described by

∂ui

∂t
= ∇ · (di(x)∇ui) + fi(x, u), 1 ≤ i ≤ n,

∂ui

∂ν
= 0, ∀ 1 ≤ i ≤ n with di > 0, t > 0, x ∈ ∂Ω,

(3.1)

where ui is the density of a population in compartment i, di(x) is
the diffusion coefficient of population ui, fi is the reaction term in
compartment i under the influences of demographic process and
epidemic interactions, Ω is the spatial habitat in Rl with smooth
boundary ∂Ω, ν denotes the unit normal vector on ∂Ω, and the
no-flux boundary condition means that no individuals cross the
boundary. We emphasize that some diffusion coefficients may be
zero on Ω.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Let u = (u1, . . . , un)T , with each ui ≥ 0, be the state of
individuals in all compartments. We assume that they can be
divided into two types: infected compartments, labeled by
i = 1, . . . ,m, and uninfected compartments, labeled by
i = m + 1, . . . , n. Define Us to be the set of all disease-free states:

Us := {u ≥ 0 : ui = 0, ∀ i = 1, . . . ,m}.
Let Fi(x, u) be the input rate of newly infected individuals in the
ith compartment, V+

i (x, u) be the rate of transfer of individuals
into compartment i by other means (for example, births,
immigrations), and V−i (x, u) be the rate of transfer of individuals
out of compartment i (for example, deaths and recovery). Thus,
the model (3.1) can be rewritten as

∂ui

∂t
= ∇ · (di(x)∇ui) + Fi(x, u)− Vi(x, u), 1 ≤ i ≤ n,

∂ui

∂ν
= 0, ∀ 1 ≤ i ≤ n with di > 0, t > 0, x ∈ ∂Ω,

(3.2)

where Vi = V−i − V+
i .

Xiaoqiang Zhao, Memorial University of Newfoundland
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We make the following assumptions:

(A1) For each 1 ≤ i ≤ n, functions Fi(x, u),V+
i (x, u), V−i (x, u)

and di(x) are nonnegative and continuous on Ω× Rn
+ and

continuously differential with respect to u.

(A2) If ui = 0, then V−i = 0. In particular, if u ∈ Us, then V−i = 0
for i = 1, . . . ,m.

(A3) Fi = 0 for i > m.

(A4) If u ∈ Us, then Fi = V+
i = 0 for i = 1, . . . ,m.

Note that (A1) arises from the simple fact that each function
denotes a directed non-negative transfer of individuals.
Biologically, (A2) means that there is no transfer of individuals out
of a compartment if the compartment is empty; (A3) indicates
that there is no infection for uninfected compartments; (A4)
implies that the population will remain free of disease if it is free of
disease at the beginning.

Xiaoqiang Zhao, Memorial University of Newfoundland
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We assume that system (3.2) admits a disease-free steady state

u0 = (0, . . . , 0, u0
m+1(x), . . . , u0

n(x))T ,

where u0
i (x) > 0,m + 1 ≤ i ≤ n for all x ∈ Ω. Set

uI = (u1, · · · , um)T , dI(x) = (d1(x), · · · , dm(x))T ,

uS = (um+1, · · · , un)T , dS(x) = (dm+1(x), · · · , dn(x))T ,

and

∇ · (dI(x)∇uI) = (∇ · (d1(x)∇u1), · · · ,∇ · (dm(x)∇um))T ,

∇ · (dS(x)∇uS) = (∇ · (dm+1(x)∇um+1), · · · ,∇ · (dn(x)∇un))T ,

fI(x, u) = (f1(x, u), · · · , fm(x, u))T ,

fS(x, u) = (fm+1(x, u), · · · , fn(x, u))T .

Let

M0(x) :=
(

∂fi(x, u0(x))
∂uj

)
m+1≤i,j≤n

.

Xiaoqiang Zhao, Memorial University of Newfoundland
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For the linear reaction-diffusion system

∂uS

∂t
= ∇ · (dS(x)∇uS) + M0(x)uS ,

∂ui

∂ν
= 0, ∀m + 1 ≤ i ≤ n with di > 0, t > 0,

(3.3)

we make the following assumption to ensure u0 is linearly stable in
the disease-free space.

(A5) M0(x) is cooperative for all x ∈ Ω and
λ0(M0) := s(∇ · (dS∇) + M0) < 0.

By assumptions (A1)-(A4), we can set

DuF(x, u0(x)) =
(

F (x) 0
0 0

)
and

DuV(x, u0(x)) =
(

V (x) 0
J(x) −M0(x)

)
,

Xiaoqiang Zhao, Memorial University of Newfoundland
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where F (x) and V (x) are two m×m matrices defined by

F (x) =
(

∂Fi(x, u0(x))
∂uj

)
1≤i,j≤m

and

V (x) =
(

∂Vi(x, u0(x))
∂uj

)
1≤i,j≤m

,

respectively, and J(x) is an (n−m)× n matrix. Note that (A1)
and (A4) imply that F (x) is non-negative.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Set X1 := C(Ω, Rm) and X+
1 := C(Ω, Rm

+ ). Let T (t) be the
solution semigroup on X1 associated with the following linear
reaction-diffusion system

∂uI

∂t
= ∇ · (dI(x)∇uI)− V (x)uI ,

∂ui

∂ν
= 0, ∀ 1 ≤ i ≤ m with di > 0.

(3.4)

Note that the internal evolution of individuals in the infectious
compartments due to deaths and movements among the
compartments is dissipative, and exponentially decays in many
cases because of the loss of infective members from natural
mortalities and disease-induced mortalities. Thus, we assume that

(A6) −V (x) is cooperative for each x ∈ Ω, and
λ0(−V ) := s(∇ · (dI∇)− V ) < 0.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Now we assume that the state variables are near the disease-free
steady state u0. Then we introduce the distribution of initial
infection described by φ(x). Under the synthetical influences of
mobility, mortality and transfer of individuals in infected
compartments, the distribution of those infective members as time
evolves becomes T (t)φ(x). Thus, the distribution of new infection
at time t is F (x)T (t)φ(x). Consequently, the distribution of total
new infections is ∫ ∞

0
F (x)T (t)φ(x)dt.

Define

L(φ)(x) :=
∫ ∞

0
F (x)T (t)φdt = F (x)

∫ ∞

0
T (t)φdt.

Then L is a continuous and positive operator which maps the
initial infection distribution φ to the distribution of the total
infective members produced during the infection period. This
motivates us to define R0 := r(L).
Xiaoqiang Zhao, Memorial University of Newfoundland
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Let B := ∇ · (dI∇)− V . By using the theory developed by
Thieme (2009), we can prove the following result.

Theorem 3.1 Let (A1)-(A6) hold. Then the following statements
are valid:

(i) R0 − 1 has the same sign as λ∗ := s(B + F ).
(ii) If R0 < 1, then u0 is asymptotically stable for system (3.2).

Xiaoqiang Zhao, Memorial University of Newfoundland



Introduction The principal eigenvalue The basic reproduction number An application

Theorem 3.2 Let (A1)-(A6) hold. Assume that there exists d0 > 0
such that di(x) ≥ d0 for all 1 ≤ i ≤ m. If the elliptic eigenvalue
problem

−∇ · (dI(x)∇φ) + V (x)φ = µF (x)φ, x ∈ Ω,

∂φ

∂ν
= 0, x ∈ ∂Ω.

admits a unique positive eigenvalue µ0 with a positive
eigenfunction, then R0 = r(−FB−1) = r(−B−1F ) = 1/µ0.

Proof. Use the Krein-Rutman theorem and the perturbation
theory for linear operators.

In the case where some di(x) are identically zero, we can reduce
the computation of R0 to that of the principal eigenvalue of a lower
dimensional elliptic eigenvalue problem under additional conditions.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Without loss of generality, we assume that
dI(x) = (d1(x), . . . , dm(x)) satisfies (D) with k = m, and then use
the notations ui1 , ui2 , and ∇ · (di1(x)∇ui1) in section 2. We split
two m×m matrices F (x) and V (x) into

F (x) =
(

F11(x) F12(x)
F21(x) F22(x)

)
, V (x) =

(
V11(x) V12(x)
V21(x) V22(x)

)
,

where F11 and V11 are i1 × i1 matrices, F22 and V22 are i2 × i2
matrices, and i1 + i2 = m. Then we have the following result.
Theorem 3.3 Let (A1)-(A6) hold and assume that s(−V22) < 0.
Let B1 := ∇ · (di1∇)− V1, where V1 := V11 − V12V

−1
22 V21. Then

the following statements are valid:

(i) If F12 = 0 and F22 = 0, then R0 = r(−B−1F ) = r(−B−1
1 F1),

where F1 = F11 − V12V
−1
22 F21.

(ii) If F21 = 0 and F22 = 0, then R0 = r(−B−1F ) = r(−B−1
1 F2),

where F2 := F11 − F12V
−1
22 V21.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Remark 3.1 If we replace the nonzero diffusion terms
−∇ · (di(x)∇) with uniformly elliptic operators of second order
and use Dirichlet or Robin type boundary conditions, then
Theorems 3.1, 3.2 and 3.3 are still valid.

The following result shows that the reaction-diffusion epidemic
model in a spatially homogenous habitat with the Neumann
boundary condition admits the same basic reproduction number as
its ODE counterpart.

Theorem 3.4 If each di is a positive constant for 1 ≤ i ≤ m, and
F (x) = F and V (x) = V are independent of x ∈ Ω, then
R0 = r(FV −1).

Proof. Use the perturbation theory for linear operators and the
uniqueness of the principal eigenvalue.

Xiaoqiang Zhao, Memorial University of Newfoundland
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An application

Now let us return to the spatial model of rabies:

∂E

∂t
= β(x)IS − σE −

[
b + (a− b)

N

K

]
E,

∂I

∂t
=

∂

∂x

(
D(x)

∂I

∂x

)
+ σE − α(x)I −

[
b + (a− b)

N

K

]
I,

∂S

∂t
= (a− b)S

(
1− N

K

)
− β(x)IS,

(4.1)

subject to the boundary condition ∂I
∂x

∣∣∣
x=0

= ∂I
∂x

∣∣∣
x=1

= 0.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Note that system (4.1) admits a disease-free steady sate (0, 0,K).
Thus, the matrices F and V become

F (x) =
(

0 β(x)K
0 0

)
, V (x) =

(
σ + a 0
−σ α(x) + a

)
.

We first consider the elliptic eigenvalue problem:

− (σ + a)E + β(x)KI = λE, x ∈ (0, 1),
d

dx

(
D(x)

dI

dx

)
+ σE − (α(x) + a)I = λI, x ∈ (0, 1),

dI

dx

∣∣∣
x=0

=
dI

dx

∣∣∣
x=1

= 0.

(4.2)

Lemma 4.1 Problem (4.2) has a principal simple eigenvalue λ∗

with a positive eigenfunction.

Proof. First construct a sub-solution, and then use Theorem 2.1.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Let R0 be the basic reproduction number of system (4.1), as
defined in section 3. Then we have the following observation.

Lemma 4.2 Let µ1 be the unique positive eigenvalue of the
following eigenvalue problem:

− d

dx

(
D(x)

dφ

dx

)
+ (α(x) + a)φ = µ

σKβ(x)
σ + a

φ, x ∈ (0, 1),

dφ

dx

∣∣∣
x=0

=
dφ

dx

∣∣∣
x=1

= 0,

with a positive eigenfunction. Then R0 = 1/µ1.

Proof. Use Theorem 3.3 (i).

Xiaoqiang Zhao, Memorial University of Newfoundland
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The subsequent result implies that R0 is a threshold value for the
local stability of the disease-free equilibrium (0, 0,K) of system
(4.1).

Theorem 4.1 The following statements are valid:

(i) If R0 < 1, then the disease-free steady state (0, 0,K) is
asymptotically stable for (4.1).

(ii) If R0 > 1, then there exists ε0 > 0 such that any positive
solution of (4.1) satisfies
lim supt→∞ ‖(E(t, ·), I(t, ·), S(t, ·))− (0, 0,K)‖ ≥ ε0.

To explore the influences of heterogeneous spatial infections and
population diffusion, we compute R0 numerically (see Lemma 4.2).

Xiaoqiang Zhao, Memorial University of Newfoundland
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Case 1. K = 0.98, a = 0.0027, α = 0.2, σ = 0.0357, D = 0.137,
and β(x) = 0.2192(1 + c1 cos(πx)).

0 0.2 0.4 0.6 0.8 1
0.98

1

1.02

1.04

1.06

1.08

1.1

c
1

R
0

Figure: 1

R0 is an increasing function of c1. Thus, the spatially
heterogenous infection can induce the persistence of disease.

Xiaoqiang Zhao, Memorial University of Newfoundland
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Case 2. K = 1.5, a = 0.0027, β = 0.2192(1 + cos(πx)), σ =
0.0357, α = 0.2(1 + sin(πx)) and D = D0(1 + cos(πx)).
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Figure: 2

R0 decreases as D0 increases.
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Case 3. We consider the optimal vaccine strategy in spatially
heterogenous environment. Fix

β(x) = 0.2192× 6x(1− x),

which has the highest infection coefficient at the center of spatial
domain. Motivated by the fact that vaccine baits are distributed by
aeroplane in practice, we suppose that the distribution of vaccine is
described by

v0(x) =

{
c0
L , if 0 ≤ a0 < a0 + L ≤ 1,

0, otherwise,

where c0 > 0 represents the total quantity of vaccine baits. With
the introduction of vaccine, we assume that β(x) is replaced by
β(x)(1− η(x)), where η(x) is the vaccine efficacy. For an
illustrative purpose, we fix

η(x) =
v0(x)

1 + v0(x)
.

Xiaoqiang Zhao, Memorial University of Newfoundland
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We hope to minimize R0 by selecting best a0 and L for fixed c0,
which gives the optimal strategy of vaccine distribution.
Fixing K = 3, a = 0.0027, α = 0.2, σ = 0.0357 and D = 0.137,
numerical computations indicate that the minimum c0 to drive R0

below 1 is 0.18 where a0 = 0.23 and L = 0.54 are chosen to
obtain the lowest R0 (see Figures 3 and 4).
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Thank you!

Xiaoqiang Zhao, Memorial University of Newfoundland
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