Cholera dynamics, multiple transmission pathways, and disease spread in Haiti

> Marisa Eisenberg University of Michigan

Everything Disperses to Miami 12/14/12

Outline

- Introduction to cholera
- SIWR model
- Haiti epidemic initial outbreak gravity model
- Spatial spread, new data case data, human movement data, displaced person camps
- Incorporating rainfall & environmental factors
- Ongoing & future work

Introduction

- Cholera: 3-5 million cases/year and over 100,000 deaths/year
- Several pandemics during 1800's
- Recent outbreaks include Angola, Zimbabwe, Haiti (>597,000 cases, >7555 deaths)
- Endemic in many regions of India, Bangladesh, Africa, Peru

Cholera

- Waterborne disease caused by bacterium V. cholerae
- Profuse, watery diarrhea, vomiting, dehydration
- Up to 50% fatal if untreated
- Infection-derived immunity
- Treatment: oral or IV rehydration
- Direct & environmental transmission

What are the implications of the different transmission pathways?

"In epidemic situations, a fundamental question regarding the epidemiology of cholera is: what is the relative importance of human-to-human (i.e. fecal-oral) versus environment-to-human transmission (i.e. exposure to the environmental reservoir of Vibrio cholerae)?"

- Hartley et al, PLoS Medicine 2006

Cholera: SIWR Model

W = pathogen concentration in water reservoir

Tien & Earn, Bull. Math. Biol. 2010

Cholera: SIWR Model

W = pathogen concentration in water reservoir

Tien & Earn, Bull. Math. Biol. 2010

SIWR Model

$$\frac{dS}{dt} = \mu N - b_W SW - b_I IS - \mu S$$

$$\frac{dI}{dt} = b_W SW + b_I SI - \gamma I - \mu I$$

$$\frac{dW}{dt} = \alpha I - \xi W$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

$$R_0 = \frac{\mu + \gamma}{\mu + \gamma}$$

Tien & Earn, Bull. Math. Biol. 2010

 $+b_{W}N\frac{\alpha}{\xi}$

R

Cholera: SIWR Model

- Can we estimate R₀? Can we predict total cases? Epidemic time course? Seasonality?
- What is the relative importance of water vs person-to-person transmission? How is cholera spreading? Water vs human movement?
- Environment (rainfall, temp, etc) effects on cholera transmission?
- Parameter estimation and identifiability for the SIWR model

Identifiability & Parameter Estimation

- Can we estimate the model parameters from the data?
 - Transmission parameters?
 - R₀?
- Identifiability structural vs practical
 - Differential algebra approach

 $y = (m_1 + m_2)x + b$

SIWR Identifiability

- SIWR model structurally unidentifiable
- Rescale to make globally identifiable (mostly)

$$\frac{ds}{dt} = \mu - \beta_{W}ws - \beta_{I}si - \mu s$$

$$\frac{di}{dt} = \beta_{W}ws + \beta_{I}si - \gamma i - \mu i$$

$$\frac{dw}{dt} = \xi(i - w)$$

$$\frac{dr}{dt} = \gamma i - \mu r$$

$$R_{0} = \frac{\beta_{I} + \beta_{W}}{\mu + \gamma}$$

SIWR Identifiability

- SIWR model structurally unidentifiable
- Rescale to make globally identifiable (mostly)
 - Lose information about shedding rate lpha
- Identifiability can be lost if $\xi \rightarrow \infty$, yielding combination $\beta_W + \beta_I$
- Practical identifiability dependence between $\beta_{\scriptscriptstyle W}$ and $\xi \Rightarrow {\sf R}_0$ unidentifiable
- Water measurements improve practical & structural identifiability
 Eisenberg, Robertson, Tien 2012 (Submitted)

Haiti Cholera Outbreak

Artibonite Department

$\mathcal{R}_0 \approx 2$ $1/\xi \approx 16.5 \text{ days}$

- Outbreak began in St. Marc region of Artibonite Department
- Long tail in daily hospitalizations, due to persistence of V. cholerae in water

Modeling Spatial Spread in Haiti

- Multi-patch SIWR model with coupling via "gravity"
- Fit to hospitalization data from MSPP

Tuite, Tien, Eisenberg, et al. 2011 (Annals of Int Med)

Modeling Spatial Spread in Haiti

- Fits overall epidemic dynamics well
- Predicts department ordering & initial cases well (Spearman $\rho = 0.97, 0.92$)
- Useful for examining effect of interventions so far, evaluating additional interventions
- Mechanistic coupling: what drives the spread of cholera? Environment? Rainfall? Seasonality?

Case Data

%

Country, department, commune

Hôpital Albert Schweitzer Artibonite Valley

Displaced person camps

Spatial Patterns & Moran's I

Measure of spatial clustering/patterns

$$I = \frac{n}{S_0} \sum_{i,j} W_{ij} (x_i - \overline{x}) (x_j - \overline{x})$$
$$S_0 = \sum_{i,j} W_{ij}$$

• W = connectivity matrix

- Human movement cell phone data
- Water movement adjacency
- Gravity model connectivity?

IDP Camp WASH Data

- Case data from >1000 camps across 13 communes
- Presence/absence data for toilets, water provision, bathing facilities, and waste management
- Chorine residuals in drinking water

Characteristic	Count (%)	Range	Mean
Presence of toilets	58 (82.9)		
Presence of water provision	35 (50.0)		
Presence of bathing	29 (41.4)		
facilities			
Presence of waste	14 (20.0)		
management			
Number of people at IDP		65 - 24500	1279
camp			
Population density of IDP		0.9 - 117.9	17.9
camp (individuals per			
square meter)			
Area of IDP camp		649.2 - 116242.2	10486.3
Cumulative number of		5 - 346	82
cholera cases reported at			
IDP camp			
NOTE IDD Internalie Direct	1 D		

NOTE. IDP, Internally Displaced Person.

IDP Camp Wash Data

• IDP Camp cases - cholera risk

- decreases with clean water, toilet availability, waste management
- increases with bathing (why?)

 Kuhn-Kuenne Centroid shows initial invasion period in first months of disease

IDP Camp Moran's I

- Spatial autocorrelation/ clustering appears later
- IDP camps spared early wave of cholera, likely due to early intervention efforts of WASH NGOs

Preliminary Results

- Initial pattern of spatial spread during first weeks/months
 - Both water movement & human movement may play a role
- Summertime surge in cases seen at all levels
- Later cases environment, rainfall important?

Cholera & the environment

Rainfall Data

- NASA TRMM Data satellite precipitation data (resolution 0.25° × 0.25°) averaged over each area
- USGS Rain Gauges in the Morne Gentilehomme and Foret de Pins regions

SIWR Model & Rainfall

$$\frac{ds}{dt} = \mu - \beta_W f_{rain}(t) ws - \beta_I si - \mu s$$

$$\frac{di}{dt} = \beta_W f_{rain}(t) ws + \beta_I si - \gamma i - \mu i$$

$$\frac{dw}{dt} = \xi(i - w)$$

$$\frac{dr}{dt} = \gamma i - \mu r$$

$$y = ki$$

Eisenberg, Kujbida, Tuite, Fisman Tien 2012 (Submitted)

Rainfall Forcing & Identifiability

- Adding the rainfall forcing function corrects the structural identfiability problem when $\xi \rightarrow \infty$
- Allows $\beta_{\scriptscriptstyle W}$ and $\beta_{\scriptscriptstyle I}$ to be estimated separately
- Can also improve practical identifiability

Eisenberg, Kujbida, Tuite, Fisman Tien 2012 (Submitted)

Eisenberg, Kujbida, Tuite, Fisman Tien 2012 (Submitted)

Ongoing Work: Hotspots, Disease Risk & Spatial Spread

- How does the arrangement of good/bad patches affect disease spread? (hotspots)
- Water movement among patches pathogen decay vs. water movement
 - decay >> movement patches decouple
 - movement >> decay weighted average accounting for network topology

Conclusions

- Range of modeling approaches & data sets
- Initial invasion phase with spatial clustering
 - Spatial spread depends on both human & water movement
- Rainfall & environment are key factors for capturing cholera dynamics going forward
 - Water & rainfall information can improve identifiablity
 - Rainfall-based predictions?

Thank you!

- Collaborators
 - Joe Tien (OSU)
 - Suzanne Robertson (VCU)
 - Greg Kujbida, Ashleigh Tuite, David Fisman (UofT)
 - David Earn (McMaster)
 - Pauline van den Driessche, Zhisheng Shuai, Junling Ma
- Hôpital Albert Schweitzer, Haiti
- UN WASH Cluster, CDC
- Digicel & Linus Bengsston (Karolinska Inst.)
- National Science Foundation (EID Grant 1115881)

UNIVERSITY OF MICHIGAN

National Science Foundation

