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Outline
• Introduction to cholera

• SIWR model

• Haiti epidemic - initial outbreak - gravity model

• Spatial spread, new data - case data, human 
movement data, displaced person camps

• Incorporating rainfall & environmental factors

• Ongoing & future work



Introduction

• Cholera: 3‐5 million cases/year 
and over 100,000 deaths/year

• Several pandemics during 1800’s

• Recent outbreaks include 
Angola, Zimbabwe, Haiti 
(>597,000 cases, >7555 deaths)

• Endemic in many regions of 
India, Bangladesh, Africa, Peru



Cholera

• Waterborne disease caused by bacterium V. cholerae

• Profuse, watery diarrhea, vomiting, dehydration

• Up to 50% fatal if untreated

• Infection-derived immunity 

• Treatment: oral or IV 
rehydration

• Direct & environmental 
transmission



What are the implications of the 
different transmission pathways?

"In epidemic situations, a fundamental question 
regarding the epidemiology of cholera is: what is 
the relative importance of human-to-human (i.e. 

fecal-oral) versus environment-to-human 
transmission (i.e. exposure to the environmental 

reservoir of Vibrio cholerae)?”

– Hartley et al, PLoS Medicine 2006



Cholera: SIWR Model
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SIWR Model
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Cholera: SIWR Model

• Can we estimate R0? Can we predict total 
cases? Epidemic time course? Seasonality?

• What is the relative importance of water vs 
person-to-person transmission? How is cholera 
spreading? Water vs human movement?

• Environment (rainfall, temp, etc) effects on 
cholera transmission?

• Parameter estimation and identifiability for the 
SIWR model



Identifiability & 
Parameter Estimation

• Can we estimate the model 
parameters from the data? 

• Transmission parameters?

• R0?

• Identifiability - structural vs 
practical

• Differential algebra approach
Eisenberg, Robertson, Tien 2012 (Submitted)
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SIWR Identifiability
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• SIWR model structurally unidentifiable

• Rescale to make globally identifiable (mostly) 



SIWR Identifiability
• SIWR model structurally unidentifiable

• Rescale to make globally identifiable (mostly)

• Lose information about shedding rate

• Identifiability can be lost if ξ→∞, yielding 
combination  

• Practical identifiability - dependence between      
     and    ⇒ R0 unidentifiable

• Water measurements improve practical & 
structural identifiability 

!W + !I

!W !

!

Eisenberg, Robertson, Tien 2012 (Submitted)



Haiti Cholera Outbreak

deposited with an MSPP statistician for each Department. Contacting Health Cluster and MSPP
officials by phone or email is difficult from outside Haiti. One of the purposes of our trip is to make
contact with Health Cluster officials and the MSPP Department statisticians face to face, and thus lay
the groundwork for future collaboration.

The severity of the cholera outbreak in Haiti emphasizes the fundamental importance of clean
water and sanitation for health and well being. One of the goals of this proposal is to highlight this
fact, by explicitly incorporating data on water quality and sanitation into dynamic models of cholera
epidemics. Given the extensive body of research in mathematical epidemiology (e.g. [1, 6]), surpris-
ingly little work has been done on modeling waterborne diseases – and even less on incorporating
empirical measures of water quality and sanitation into the types of mathematical models for which
the theory has been developed. This is of direct practical importance. By identifying “hot spots”
of cholera risk and understanding their role in disease transmission through mathematical modeling,
public health officials can pinpoint priority areas for intervention. Insights from our modeling efforts
in Haiti will also be relevant for future outbreaks in other regions of the world. One of the primary
concerns in epidemic situations is forecasting where the outbreak is likely to spread. This involves
calibration of mathematical models of the outbreak before the disease has reached a given area, which
is a challenging task. The research proposed here represents a step towards this goal, by examining
the relationship between water quality and sanitation indicators with parameter values in our dynamic
models for cholera spread. A goal of our larger research program is to assemble a database of case
data from cholera outbreaks worldwide, together with water and sanitation measurements from the
affected locales. This database can then be used to examine the relationship between water and sanita-
tion indicators with mathematical model parameters in more general terms. This type of information
will be of interest to organizations involved in outbreak response, such as the Preparedness Modeling
Unit of the Centers for Disease Control, and the National Biosurveillance Integration Center within
the Department of Homeland Security.

Figure 3: One panel from an educational poster about
cholera made by the Haitian MSPP.

The requested funds in this proposal will be
used to lay the groundwork for evaluating in-
tervention efforts for cholera in Haiti. A key
component of the short term preventative inter-
ventions to date involves education campaigns
through a variety of media, including posters,
radio announcements and songs, and cell phone
text messages (see e.g. Figure 3). The effec-
tiveness of these education campaigns has not
been evaluated. By establishing contacts with
the UN Health Cluster overseeing the coordi-
nation of these campaigns, we will be able to
work towards obtaining data on both the cover-
age level of these education messages, as well as
on cholera case data at a corresponding level of
spatial resolution. Mathematical and statistical
models will then be used to quantify the impact of these intervention efforts. Of particular interest
are the use of text messages for cholera education. In our previous work on cholera in Haiti, we have
established a collaboration with Digicel, the primary cell phone carrier in Haiti. Linus Bengtsson and
colleagues at the Karolinska Institute (Sweden) initially forged an agreement with Digicel in order to
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Artibonite Department

• Outbreak began in St. Marc region of Artibonite Department

• Long tail in daily hospitalizations, due to persistence of V. 
cholerae in water

 R0 ! 2 1 / ! " 16.5 days



Modeling Spatial Spread in Haiti

• Multi-patch SIWR model with 
coupling via “gravity” 

• Fit to hospitalization data from MSPP

Tuite, Tien, Eisenberg, et al. 2011 (Annals of Int Med)
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Modeling Spatial Spread in Haiti

• Fits overall epidemic dynamics well

• Predicts department ordering & initial cases well 
(Spearman ρ = 0.97, 0.92)

• Useful for examining effect of interventions so far, 
evaluating additional interventions

• Mechanistic coupling: what drives the spread of 
cholera?  Environment? Rainfall? Seasonality?

Tuite, Tien, Eisenberg, et al. 2011 (Annals of Int Med)
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Figure 11: Weekly cholera cases from all ORPs combined.
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Spatial Patterns & Moran’s I
• Measure of spatial clustering/patterns

• W = connectivity matrix

• Human movement - cell phone data

• Water movement - adjacency

• Gravity model connectivity?

I=
n
S0

Wij xi ! x( ) x j ! x( )
i, j
"
S0= Wij

i, j
!
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IDP Camp WASH Data
• Case data from >1000 camps across 13 communes 

• Presence/absence data for toilets, water provision, 
bathing facilities, and waste management

• Chorine residuals in drinking water

Te Roche Camp, Tabarre – June 2011 



IDP Camp Wash Data

• IDP Camp cases - cholera risk 

• decreases with clean water, toilet availability, 
waste management

• increases with bathing (why?)

• Kuhn-Kuenne Centroid shows initial invasion 
period in first months of disease



IDP Camp
Moran’s I

• Spatial autocorrelation/
clustering appears later

• IDP camps spared early 
wave of cholera, likely 
due to early intervention 
efforts of WASH NGOs
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tance. Dashed line shows 95% confidence level for one-sided test.
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Preliminary Results

• Initial pattern of spatial spread 
during first weeks/months

• Both water movement & 
human movement may 
play a role

• Summertime surge in cases 
seen at all levels

• Later cases - environment, 
rainfall important?
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Cholera & the environment
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Figure 1: Cholera hospitalizations in Haiti from October -
December 2010.

The recent natural disasters are an im-
portant facet of predicting epidemic dy-
namics in Haiti— much of the country’s
already poor water and sanitation infras-
tructure was destroyed in the recent Jan-
uary 2010 earthquake. The damage from
the earthquake displaced approximately 1.6
million people [16], over one million of
whom remain in tent camps [15] without
electricity, running water, or sewage dis-
posal. This disarray exacerbated the risk of
infectious disease, particularly waterborne
diseases such as cholera, contributing to the
spread of the outbreak [7]. Additionally,
after the earthquake many residents of the
major cities such as Port au Prince (the cap-

ital of Haiti) fled the cities to return to the outlying departments. The resulting higher population
densities in rural areas is likely to have affected disease spread. To compound these issues, flooding
due to the subsequent Hurricane Tomas is believed to have caused a resurgence in the epidemic [11],
highlighting the direct link between the status of available water and the course of the epidemic (see
Figure 1).

Aspects of social and human behavior also affect cholera dynamics and case counts. The social
stigma associated with cholera is severe [10], with at least 45 lynchings reported within the Grande
Anse department [17]. Cholera victims and their families may be reluctant to reveal that a sickness or
death is due to cholera (in some cases hiding the body of the deceased [11]). This makes it difficult
to evaluate mortality and case counts within the community at large outside of hospitals, particularly
in more remote villages [10].

Figure 2: A man suffering from cholera is bathed, St Marc,
Artibonite, Haiti (Photo by AP/Ramon Espinosa).

The ongoing cholera outbreak in Haiti
thus provides an example of the type of
public health crisis where insights from
cholera modeling are needed rapidly from
incomplete data, and where forecasting the
spatial dynamics of the cholera outbreak is
an important but difficult task [2, 4, 14, 19,
20]. Currently, daily cholera cases and hos-
pitalizations by Department are available
through the Haitian Ministere de la Sante
Publique et de la Population (MSPP) [9],
with the outbreak beginning in the St. Marc
region of the Artibonite Department in Oc-
tober 2010. Additionally, due to the ensu-
ing relief efforts following the earthquake,
a number of unusual data sets are available
from Haiti. These include highly detailed information on the spatial location and population sizes of

2



Rainfall Data

• NASA TRMM Data - 
satellite precipitation data 
(resolution 0.25° ! 0.25°) 
averaged over each area

• USGS Rain Gauges in the 
Morne Gentilehomme and 
Foret de Pins regions

Sud

Grande Anse Nippes
Ouest

Sud-Est

Artibonite

Centre

Nord-Ouest

Nord

Nord-Est

! " !#$ %&'( )

! * !+! , &'- . ( /( 0)

HAS

USGS Rain
Gauges

Port au Prince

Figure 1. Map of Haiti showing departments and locations of case and rainfall data sources.  
Red star indicates Port au Prince, although the general Port au Prince metropolitan area extends further 
(approximately indicated by the shaded red elipse).  HAS is indicated by a red circle adjacent to 
the Artibonite River (shown in blue). Port a Piment is indicated by the blue circle in the Sud 
department. Approximate location of USGS rain gauges southeast of Port au Prince is shown 
as a shaded blue circle, and the shaded blue square surrounding HAS indicates the region 
of area-averaged NASA precipitation data.

Port a Piment

Figure 1: Map of Haiti showing departments and locations of case and rainfall data sources. Red star indicates Port

au Prince, although the general Port au Prince metropolitan area extends further (approximately indicated by the

shaded red elipse). HAS is indicated by a red circle adjacent to the Artibonite River (shown in blue). Port a Piment

is indicated by the blue circle in the Sud department. Approximate location of USGS rain gauges southeast of Port

au Prince is shown as a shaded blue circle, and the shaded blue square surrounding HAS indicates the region of

area-averaged NASA precipitation data.

more than 18 months after the epidemic began.

As intervention efforts grapple with a disease which

is rapidly becoming endemic, understanding the role

of the physical environment, including rainfall at

both short-term time scales, and at a seasonal level,

in the spread of cholera is crucial. Anecdotally, it

has been noted that cholera case counts, which had

been declining, rose sharply with the onset of seasonal

heavy rains in the spring of 2011 [9, 10]. Rinaldo et

al. [11] include rainfall in a complex model involving

more than 300 spatial locations and including move-

ment of both people and water. In order to focus

on the role of rainfall, we take a simpler approach

here, using a combination of statistical models and

basic dynamic models to examine the relationship

between rainfall with cholera case data from several

different settings and spatial scales. A better under-

standing of the role of the physical environment in

general, and rainfall in particular, in cholera dynam-

ics in Haiti would both lead to improvement in the

ability to forecast disease incidence, and would also

help inform disease control interventions.

Many previous studies have examined the role

of weather generally, and rainfall in particular, on

cholera dynamics in countries other than Haiti [12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. However, it is

unclear how applicable these studies are to the cur-

rent Haitian situation. Most countries in which the

influence of rainfall on cholera incidence has been

studied experience endemic cholera; Haiti, by con-

trast, has been cholera free for the past century, with

the pathogen introduced from elsewhere. Further-

more, associations between rainfall and cholera risk

in other countries have been inconsistent, with both

positive and negative correlations having been re-

ported at time lags varying from weeks to months

[14, 16, 23, 17, 24, 22]. This may reflect the variety

of potential mechanisms whereby rainfall may alter

cholera risk, including via flooding leading to raw

sewage contamination of water sources [23, 22], in-

creased rainfall leading to increased iron availability,

which in turn improves Vibrio cholerae survival and

expression of cholera toxin [15, 19], and decreased wa-

ter levels leading to increased usage of existing water

sources and thus increased risk of contamination and

disease transmission [19, 22]. Ruiz-Moreno et al [22]
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SIWR Model & Rainfall

ds
dt

= µ ! "W frain t( )ws ! "I si ! µs

di
dt
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= $ i ! w( )
dr
dt

= # i ! µr
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W

S I Rµ
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!I si
µi µr

! i

!W sw
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a slower / delayed pathway. Previous studies have

shown the need for including multiple timescales of

transmission for modeling cholera dynamics [40, 41].

The scaled form of the model is shown in Fig-

ure 3, where s represents the fraction of the popu-

lation which is susceptible, i the fraction infected,

and r the fraction of the population which is recov-

ered/removed. The w compartment represents the

concentration of pathogen in the water, scaled to the

pathogen shedding and decay rates [27].

Additionally, βW is the transmission parameter for

waterborne transmission, βI the transmission param-

eter for direct transmission, γ the recovery/removal

rate, and ξ the pathogen decay rate in the water.

Note that ξ appears in the shedding term of the model

due to the rescaling of the model given in [27], which

eliminates the shedding rate parameter and makes

the parameters identifiable (estimate-able) from case

data [41].

To account for the effects of rainfall on cholera

transmission, we modified the waterborne transmis-

sion term, βW sw, to include a rainfall data forcing

function, denoted frain(t). This incorporates a mech-

anistic connection between the environment, rainfall,

and cholera disease dynamics. We take frain(t) for a

given rainfall data set to the be linear interpolation of

the rainfall data points (though very similar results

are obtained using other interpolation methods, e.g.

cubic splines). The full model equations are thus:

ṡ = −βW swfrain(t)− βIsi

i̇ = βW swfrain(t) + βIsi− γi

ẇ = ξ (i− w)

ṙ = γi

y = ki,

(1)

where the equation y = ki is a measurement equa-

tion indicating that we take the data to be given by

a fraction k of the infected population, where k incor-

porates the reporting rate and the total population

size (see [41] for details). We neglect birth and death

processes in the model given the relatively short time

scale considered.

Model parameters were estimated for four re-

gions/spatial scales, each paired with associated rain-

fall data for the region:

! "# #

$ "%

#

%
Rainfall

&''''()*
!"#$

Figure 3: Flow diagram for the scaled SIWR model with
rainfall forcing.

• HAS case data using NASA rainfall data for the

HAS region in Deschappelles

• IDP camp case data using USGS rainfall data in

the Port au Prince region

• Port au Prince MSPP case data using USGS

rainfall data in the Port au Prince region

• Country-wide MSPP case data using NASA

rainfall data for all of Haiti

Both USGS rain gauges are in a similar spatial loca-

tion (southeast of Port au Prince), so we tested both

rain gauges for the IDP camp case data and the Port

au Prince MSPP case data. For comparison, model

parameters were also estimated without any rainfall

forcing (i.e. using the model as given in Eq. (1) with

frain(t) = 1). In all cases, γ was fixed to 0.25, corre-

sponding to an infectious period of 4 days, based on

[43, 44]. Parameters were estimated using maximum

likelihood assuming Poisson distributed data in the

software Matlab [45].

As a preliminary test of the predictive ability of the

model, the model was also fitted to truncated data,

where the last two weeks of data were removed. The

resulting models were then used to generate rainfall-

forced predictions which were compared to the two

case data points not used in fitting the model.
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Rainfall Forcing & 
Identifiability

• Adding the rainfall forcing function corrects 
the structural identfiability problem when 
ξ→∞

• Allows      and     to be estimated separately

• Can also improve practical identifiability

!W !I



Eisenberg, Kujbida,Tuite, Fisman Tien 2012 (Submitted)
Figure 7: Model (solid line) fits to data (circles) for each site using the rainfall forcing function (dashed line) generated

from weekly rainfall data (diamonds). Clockwise, the panels are: HAS case data with NASA rainfall data, IDP Camp

case data with USGS rainfall data from Morne Gentilehomme, Port au Prince (PaP) MSPP case data with USGS

rainfall data from Foret de Pins, national MSPP case data with NASA rainfall data.

Parameter Units HAS Estimate IDP Camp Estimate PaP Estimate

βI days−1 0.212 0.243 0.155
βW days−1mm−1 0.00432 0.00128 0.00292
ξ days−1 0.196 0.111 0.185

k−1 people−1 1.92× 10−6 2.93× 10−5 1.39× 10−5

Table 3: Scaled SIWR parameter estimates fitted to weekly case data with rainfall forcing functions as shown in

Figure 7. PaP = Port au Prince.
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Figure 8: Model fits (black line) to case data (grey circles) with the last two data points dropped. Subsequent model

predictions compared to data points not used for fitting shown in red. Data sources are, clockwise: HAS data, IDP

Camps data, MSPP Port au Prince (PaP) data, and MSPP national case counts.

11



Ongoing Work: Hotspots, 
Disease Risk & Spatial Spread

• How does the arrangement of
good/bad patches affect disease
spread? (hotspots)

• Water movement among patches -
 pathogen decay vs. water movement

• decay ≫ movement - patches decouple

• movement ≫ decay - weighted average 
accounting for network topology

Patch 1 Patch 2

Patch 3

Patch 5

Patch 4

Patch 6

Figure 3: Hypothetical multiple-patch setup based on localized outbreaks along a river. Connectivity may be
unidirectional (e.g. along the river in this case), and some patches may be connected only via human movement
(e.g. patches 3 and 4) or only via water (e.g. patches 5 and 6).

the basic reproduction number of patch j in the absence of any connectivity between patches. One
natural approach is to define a patch as high risk (a cholera hot spot) if Rj

0 > 1, and to be low risk if
Rj

0 < 1. This definition of high and low risk patches corresponds to the ability of cholera to invade
individual patches.

Patches will vary in their water quality, sanitation facilities, and population sizes, which in the
model will correspond to the pathogen shedding rates αj , lifetime of pathogen in the water 1/ξj , and
transmission coefficients bj

I . These parameters are related to one another in the following expression
forRj

0:

Rj
0 =

Nj(bj
I + bj

W
αj

ξj
g�)

γ + µ
,

where g� is the derivative of the dose-response curve evaluated at zero. One important consequence
of this is that for dose-response curves where g�(0) = 0, the waterborne transmission term does not
affectRj

0. On the other hand, this term will affect endemic equilibria (i.e. persistence). Thus, the term
bW αj/ξj provides an alternative indicator of cholera risk for sigmoidal (and other similarly shaped)
dose-response curves. We will consider both invasibility (Rj

0) as well as persistence (αj/ξj) when
considering the heterogeneity in cholera risk for the entire domain.

There are two mathematical questions to be answered for our model in relation to objectives O1
and O3:

M1: What is the basic reproduction number and outbreak growth rate for the entire domain? In
particular, how do the basic reproduction number and rate of outbreak spread depend upon the
distribution of hot spots in the landscape?

M2: What are endemic equilibria for the system? How do these equilibria depend upon the dis-
tribution of hot spots in the landscape, and how do these equilibria change under different
intervention strategies?

Our specific approach for addressing (M1) will be to compute R0 as the spectral radius of the next
generation matrix FV −1 [113], and examining the dependence of R0 on the connectivity matrices
L, M . Similar analysis of the dominant eigenvalue and associated eigenvector of the Jacobian of the
system at the disease free equilibrium will give insight into the dependence of the outbreak growth
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Conclusions
• Range of modeling approaches & data sets

• Initial invasion phase with spatial clustering

• Spatial spread depends on both human & water 
movement

• Rainfall & environment are key factors for capturing 
cholera dynamics going forward

• Water & rainfall information can improve 
identifiablity

• Rainfall-based predictions?
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