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INFECTION OF Pseudomonas-Aeruginosa
iN LE HAVRE'’S HOSPITAL

A. Dutot, PM, D. Olivier, and G. Savin, In Eurosis, (2006)

r !
g 3 |
.

i J.

".:-—"'ﬂl""
kit

i

{ ""'“m f

J¥
:',','p'u" u;}',h“'

rh




Contact network for one Intensive Care Unit

L. Temime, L. Opatowski, Y. Pannet, C. Brun-Buisson, PY Boélle,
D. Guillemot, PNAS, (2009)
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(dS(¢)
dt
(8, + 8. )i(t,a) = —[M(a)+ D]z(t,a)

=A—-DS(t)—diag(S5(2)) j B(a)i(t,a)da

1i(1,0) = diag(S(e)) | B(@)i(t,a)da

‘”ny) = [ M(a)i(t,a)da - DR(?)



SIR models revisited: from
individual level to population level

PM and Shigui Ruan /n preparation (2012)
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S Susceptible, I Infectious, R Recovered



When one neglects the demography, an epidemic
becomes a combination of the following aspects:

(a) a rule of contacts between individuals;
(b) a rule of transmission per contact;

(c) a rule of development of the infection at the level of
individuals.



Some references

Monte-Carlo: Gillespie’s algorithm (see Doob’s book)

Epidemic on Networks

— Durrett and Levin (1994)
— Newman (2003) (2010)
— Meyers (2006)

— Durrett (2007) and (2010)

— Barrat Bathélemy and Vespignani (2008)

Epidemics and IBMs:
— Levin and Durrett (1996)
— Keeling and Grenfell (2000)
— DeAngelis and Mooij (2005)
— Grimm and Railsback (2005)
Epidemics and comparison between IMBs:
— Smieszek, Fiebig and Scholz (2009)
— Ajelli et al. (2010)
Comparison between IMB and DEM:
— Pascual and Levin (1999) (in the context of predator-prey)
— D’Agata et al. (2007) (in the context of epidemics and nosocomial infections)
— Hinow et al. (2009) (in the context of cell population dynamics)
— Sharkey (2008) (in the context of epidemics in networks)



Rules of Contacts

Assumption 2.1

(a) At any time each individual has initiated exactly one
contact with an individual in the population (possibly
himself).

(b) The duration of a contact follows an exponential law
and the average duration of a contact is 7,> 0.

(c) At the end of a given contact the initiating individual
randomly chooses a new individual within the population
and the duration for this contact is determined.



Diagram of the contact network at a given time t>=0.

The first S-individual (S,) only
contacts with himself.

The second S-individual (S,)
chooses to contact with a third S-
individual (S;) who in turn contacts
with an /-individual (/;).

I contacts another /-individual (/,)
who chooses S, for contact.




Contacts between S and | individuals

Define

* S¢ is the number of S-individual in Contact with a I-individual

* S; is the number of S-individual in contact Free with a I-individual
* | is the number of |-individual in Contact with a S-individual

* |- is the number of I-individual in contact Free with a S-individual

Under Assumption 2.1, we obtain the following model

( Sé; = I/CSL:SH (SC —+ SF) — veSco
S}w = VC g7 (SC + SF) — v SE
Ié; = ]/CS_}[—I (IC + IF) —volo

L If: :VCS—H(IC+IF)—VCIF

(2.1)

with
S=Sc+Spand I =1+ Ip.

Game theory like model!
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Figure 2: The comparison between solutions of the ordinary differential equa-
tion model and a Monte Carlo simulation of the model. The solutions of the
stochastic model converge to the equilibrium solutions of the ODE model (2.1).



Rules of transmission

Assumption 2.3

During a given contact between an S-individual and an
l-individual the probability of transmission is

(a) pg if the contact was initiated by an S-individual

(b) p, if the contact was initiated by an I|-individual

Definition : We will say that

(i) the transmission is driven only by S-individuals if ps>0 and p,=0

(i) the transmission is driven only by l-individuals if ps=0 and p,>0



Assumption 2.4 (Time of Transmission) For a given contact be-
tween a susceptible individual and an infective individual, the transmis-

sion of the disease occurs (with a probability ps or pr) only at one of the
following two moments:

(c) the beginning of the contact;
(d) the end of the contact.

Classical SIR New SIR

time of transmission

l Time
] | >

?, t t

beginning of contact end of contact

Figure 3: Time of transmission. (a) Transmission occurs at the beginning of a
contact as assumed in the classical SIR model and (b) transmission occurs at
the end of a contact as assumed in the new SIR model. In general, transmission
can occur at any moment in between.



Individual Based Models (IMB)
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Transmission Driven only by S-
Individuals

Let Assumptions 2.1 (Rules of contacts) and 2.3 (Rules of transmission)
be satisfied. Assume in addition that

ps > 0 and p; = 0.

Assumption 3.1 The duration of an infection follows an exponential law
and the average duration of an infection is T > 0.
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Asymptotic behavior

Setting
O s S, R
S=—l=—,S. =—,8, =——,andr=—
N N N N N
we obtain

(SC'Z Vc{i(s_pssc)_sc}
s, '= vc{(s+r)(s—pssc)—sf}
i'= VDS, _77Ri

'__ °
=1,




— S .
Define sc = —* one obtain

\)
.

S'=—V_p.ScS
I'=v_p,Scs—1,l
r'=n.l

' =V, (i—sc)(1- p,sc)

Conservation law property

d{s+i— T |in(1- pssc)+ln(s)]} =0

dt V. D,



Proposition 3.3 Assume that ps € (0,1), v. > 0, nr > 0, and further
suppose that

so > 0 and 19 > 0.

Then all solutions of model (3.7) and their limits satisfy the following
property for initial values with 10 > 0

s(t) 8"

‘ i(t) 0
f—lﬂ-nm r(t) o
Sc(t) 0

with the equilibrium satisfying
s +r =1

and s° being the unique solution in (D, ”—R} of the equation

Ste

s — Ak In(s") = {s0 + 70 — HE

Pst/. Psle

[In(1 — ps5.0) +In(sg)]}.  (3.11)



Comparison with the classical SIR model

1
Setv, = . < T, =time of contact = ¢, and p, = .¢ then we obtain
rs'e‘ = —ﬂS;Cgsg

!

l £ = ﬂS SC“"S&: - ﬂRie‘
(New SIR) 3 0

L=,
' = %(is —sc.)(1- B.esc.)
(s'= B si
(Classical SIR) <i'= p.si—n,i
F'=n,i

Theorem : (Uniform convergence in time)
(S \ (S\

i |—|1 [as & — 0uniformly in time for z > 0.

\". ) \F)
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Numerical Simulations
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Figure 6: Comparison of simulations of the IBM (solid curves), the classical SIR
model (1.1) (dashed curves) and the new SIR model (3.2) (dotted curves) with

3= fs.



In this subsection we run some simulations assuming that So = S at time
t = 0. This means that all S—individuals choose randomly a contact with
an {—individual at £ = 0, and for ¢ > 0 all individuals choose randomly
a contact within the all population (i.e. including the S, I and R indi-
viduals). This also means that the contacts are not vet stabilized at time

f:== {).
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Figure 7: Comparison of simulations of the IBM; (solid curves), the classical
SIR model (1.1) (dashed curves) and the new SIR model (3.2) (dotted curves)
with 3 = B¢ and a non-fully random graph of connection at time t = (0.



Transmission driven only by l-individuals

Define S, (t) the number of susceptible which have been chosen n-times
for a contact by an infectious (at time t)

&

Iyy’

&

Figure 8: Structured diagram of the population in term of contacts.



So = ve [(l —pr) S1(t) — %gﬁ(f)} + nrS1(t)
- It)S(t)+(1—pr)2Sg (t) — Sy (1) — L)

D510 + na2a(t) — 5100

S =, [I(t Sn—1(t) + (1 —pr) (n+ 1)Snt1(t) — nSa(t) — %Sn{t)]
+nR[(1 + 1)Sni1(t) — nSn ()]

oo
I'"=vepr 37 nSa(t) —nrl(t)

n—=1

R’ = nrl(t).

(4.4)

[ve(1-pD)ing] (0-1) Su1 [ve(l-pping]l nSa  [ve(1-pD)+ng] (0+1) Sen [ve(1-pr+nr] (0+2) Spe

vepr(n-1) Sy vepr (n+1) Spa

nrl
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Figure 11: Comparison of the IBM (solid curves), the new SIR model (4.10)
(dotted curves), and the classical SIR model (1.1) (dashed curves) with 5 = .
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Happy birthday Chris!



