## SOME MATHEMATICAL MODELS FOR BACTERIAL HOSPITAL INFECTIONS

Pierre Magal Institut de Mathématique de Bordeaux UMR CNRS 5251 Université Bordeaux Segalen, France

*Everything Disperse to Miami University of Miami, December 2012* 

#### INFECTION OF Pseudomonas-Aeruginosa iN LE HAVRE'S HOSPITAL

A. Dutot, PM, D. Olivier, and G. Savin, In Eurosis, (2006)



## **Contact network for one Intensive Care Unit**

L. Temime, L. Opatowski, Y. Pannet, C. Brun-Buisson, PY Boëlle, D. Guillemot, *PNAS*, (2009)





$$\begin{cases} \frac{dS(t)}{dt} = \Lambda - DS(t) - diag(S(t)) \int_{0}^{+\infty} B(a)i(t,a) da \\ (\partial_{t} + \partial_{a})i(t,a) = -[M(a) + D]i(t,a) \\ i(t,0) = diag(S(t)) \int_{0}^{+\infty} B(a)i(t,a) da \\ \frac{dR(t)}{dt} = \int_{0}^{+\infty} M(a)i(t,a) da - DR(t) \end{cases}$$

# SIR models revisited: from individual level to population level

PM and Shigui Ruan In preparation (2012)

$$\begin{cases} \frac{dS(t)}{dt} = -\beta S(t)I(t) \\ \frac{dI(t)}{dt} = \beta S(t)I(t) - \eta_{R}I(t) \\ \frac{dR(t)}{dt} = \eta_{R}I(t) \end{cases}$$

S Susceptible, I Infectious, R Recovered

When one neglects the demography, an epidemic becomes a combination of the following aspects:

- (a) a rule of contacts between individuals;
- (b) a rule of transmission per contact;
- (c) a rule of development of the infection at the level of individuals.

## **Some references**

• **Monte-Carlo:** Gillespie's algorithm (see Doob's book)

#### Epidemic on Networks

- Durrett and Levin (1994)
- Newman (2003) (2010)
- Meyers (2006)
- Durrett (2007) and (2010)
- Barrat Bathélemy and Vespignani (2008)

#### • Epidemics and IBMs:

- Levin and Durrett (1996)
- Keeling and Grenfell (2000)
- DeAngelis and Mooij (2005)
- Grimm and Railsback (2005)

#### • Epidemics and comparison between IMBs:

- Smieszek, Fiebig and Scholz (2009)
- Ajelli et al. (2010)

#### • Comparison between IMB and DEM:

- Pascual and Levin (1999) (in the context of predator-prey)
- D'Agata et al. (2007) (in the context of epidemics and nosocomial infections)
- Hinow et al. (2009) (in the context of cell population dynamics)
- Sharkey (2008) (in the context of epidemics in networks)

# **Rules of Contacts**

### Assumption 2.1

(a) At any time each individual has initiated exactly one contact with an individual in the population (possibly himself).

(b) The duration of a contact follows an exponential law and the average duration of a contact is  $T_c > 0$ .

(c) At the end of a given contact the initiating individual randomly chooses a new individual within the population and the duration for this contact is determined.

#### Diagram of the contact network at a given time t>=0.



The first S-individual  $(S_1)$  only contacts with himself.

The second *S*-individual ( $S_2$ ) chooses to contact with a third *S*individual ( $S_3$ ) who in turn contacts with an *I*-individual ( $I_5$ ).

 $I_5$  contacts another *I*-individual ( $I_4$ ) who chooses  $S_2$  for contact.

#### Contacts between S and I individuals

Define

- $S_C$  is the number of S-individual in Contact with a I-individual  $S_F$  is the number of S-individual in contact Free with a I-individual
- I<sub>C</sub> is the number of I-individual in Contact with a S-individual
- I<sub>F</sub> is the number of I-individual in contact Free with a S-individual

Under Assumption 2.1, we obtain the following model

$$\begin{cases}
S'_{C} = \nu_{C} \frac{I}{S+I} (S_{C} + S_{F}) - \nu_{C} S_{C} \\
S'_{F} = \nu_{C} \frac{S}{S+I} (S_{C} + S_{F}) - \nu_{C} S_{F} \\
I'_{C} = \nu_{C} \frac{S}{S+I} (I_{C} + I_{F}) - \nu_{C} I_{C} \\
I'_{F} = \nu_{C} \frac{I}{S+I} (I_{C} + I_{F}) - \nu_{C} I_{F}
\end{cases}$$
(2.1)

with

$$S = S_C + S_F$$
 and  $I = I_C + I_F$ .

#### Game theory like model!



Figure 2: The comparison between solutions of the ordinary differential equation model and a Monte Carlo simulation of the model. The solutions of the stochastic model converge to the equilibrium solutions of the ODE model (2.1).

# **Rules of transmission**

#### **Assumption 2.3**

During a given contact between an S-individual and an I-individual the probability of transmission is

(a)  $p_s$  if the contact was initiated by an S-individual

(b)  $p_I$  if the contact was initiated by an I-individual

**Definition :** We will say that

(i) the transmission is driven only by S-individuals if  $p_s > 0$  and  $p_l = 0$ 

(ii) the transmission is driven only by I-individuals if  $p_s=0$  and  $p_l>0$ 

Assumption 2.4 (Time of Transmission) For a given contact between a susceptible individual and an infective individual, the transmission of the disease occurs (with a probability  $p_S$  or  $p_I$ ) only at one of the following two moments:

- (c) the beginning of the contact;
- (d) the end of the contact.



Figure 3: Time of transmission. (a) Transmission occurs at the beginning of a contact as assumed in the classical SIR model and (b) transmission occurs at the end of a contact as assumed in the new SIR model. In general, transmission can occur at any moment in between.

# Individual Based Models (IMB)

|                    | Transmission<br>driven by S        | Transmission<br>driven by I         |
|--------------------|------------------------------------|-------------------------------------|
| Begging of contact | IBM <sub>11</sub><br>Classical SIR | IBM <sub>12</sub><br>Classical SIR  |
| End of<br>contact  | IBM <sub>21</sub><br>First new SIR | IBM <sub>22</sub><br>Second new SIR |

# Transmission Driven only by S-Individuals

Let Assumptions 2.1 (Rules of contacts) and 2.3 (Rules of transmission) be satisfied. Assume in addition that

 $p_S > 0$  and  $p_I = 0$ .

Assumption 3.1 The duration of an infection follows an exponential law and the average duration of an infection is  $T_R > 0$ .

$$\begin{cases} S_c' = v_c \left\{ \frac{I}{N} \left[ S_F + (1 - p_s) S_c \right] - S_c \right\} \\ S_F' = v_c \left\{ \frac{S + R}{N} \left[ S_F + (1 - p_s) S_c \right] - S_F \right\} \\ I' = v_c p_s S_c - \eta_R I \\ R' = \eta_R I \end{cases}$$



## **Asymptotic behavior**

## Setting

$$s = \frac{S}{N}, i = \frac{I}{N}, s_c = \frac{S_c}{N}, s_f = \frac{S_f}{N}, \text{ and } r = \frac{R}{N}$$

we obtain

$$\begin{cases} s_c' = v_c \{i(s - p_s s_c) - s_c\} \\ s_f' = v_c \{(s + r)(s - p_s s_c) - s_f\} \\ i' = v_c p_s s_c - \eta_R i \\ r' = \eta_R i \end{cases}$$

Define 
$$\overline{s}_{c} = \frac{s_{c}}{s}$$
 one obtain  

$$\begin{cases} s' = -v_{c} p_{s} \overline{s}_{c} s \\ i' = v_{c} p_{s} \overline{s}_{c} s - \eta_{R} i \\ r' = \eta_{R} i \\ \overline{s}_{c}' = v_{c} (i - \overline{s}_{c})(1 - p_{s} \overline{s}_{c}) \end{cases}$$

## **Conservation law property**

$$\frac{\mathrm{d}}{\mathrm{d}t}\left\{s+i-\frac{\eta_{R}}{\nu_{C}p_{s}}\left[\ln\left(1-p_{s}\bar{s}_{C}\right)+\ln(s)\right]\right\}=0$$

**Proposition 3.3** Assume that  $p_S \in (0,1)$ ,  $\nu_c > 0$ ,  $\eta_R > 0$ , and further suppose that

$$s_0 > 0 \text{ and } i_0 > 0.$$

Then all solutions of model (3.7) and their limits satisfy the following property for initial values with  $i_0 > 0$ 

$$\lim_{t \to +\infty} \begin{pmatrix} s(t) \\ i(t) \\ r(t) \\ \bar{s}_c(t) \end{pmatrix} = \begin{pmatrix} s^* \\ 0 \\ r^* \\ 0 \end{pmatrix}$$

with the equilibrium satisfying

$$s^* + r^* = 1$$

and  $s^*$  being the unique solution in  $\left(0, \frac{\eta_R}{p_S \nu_c}\right]$  of the equation

$$s^* - \frac{\eta_R}{p_S \nu_c} \ln(s^*) = \{s_0 + i_0 - \frac{\eta_R}{p_S \nu_c} [\ln(1 - p_S \bar{s}_{c0}) + \ln(s_0)]\}.$$
 (3.11)

## **Comparison with the classical SIR model**

Set 
$$v_c = \frac{1}{\varepsilon} \Leftrightarrow T_c$$
 = time of contact =  $\varepsilon$ , and  $p_s = \beta_s \varepsilon$  then we obtain  
(New SIR)
$$\begin{cases}
s'_s = -\beta_s \overline{s}_{c_s} s_s \\
i'_s = \beta_s \overline{s}_{c_s} s_s \\
r'_s = \eta_R i_s \\
\overline{s'}_{c_s} = \frac{1}{\varepsilon} (i_s - \overline{s}_{c_s})(1 - \beta_s \varepsilon \overline{s}_{c_s}) \\
s' = -\beta_s si \\
i' = \beta_s si - \eta_R i \\
r' = \eta_R i
\end{cases}$$

**Theorem : (Uniform convergence in time)** 

$$\begin{pmatrix} s_{\varepsilon} \\ i_{\varepsilon} \\ r_{\varepsilon} \end{pmatrix} \rightarrow \begin{pmatrix} s \\ i \\ r \end{pmatrix} \text{ as } \varepsilon \rightarrow 0 \text{ uniformly in time for } t \ge 0.$$



Figure 6: Comparison of simulations of the IBM (solid curves), the classical SIR model (1.1) (dashed curves) and the new SIR model (3.2) (dotted curves) with  $\beta = \beta_S$ .

In this subsection we run some simulations assuming that  $S_C = S$  at time t = 0. This means that all S-individuals choose randomly a contact with an I-individual at t = 0, and for t > 0 all individuals choose randomly a contact within the all population (i.e. including the S, I and R individuals). This also means that the contacts are not yet stabilized at time t = 0.



Figure 7: Comparison of simulations of the IBM<sub>1</sub> (solid curves), the classical SIR model (1.1) (dashed curves) and the new SIR model (3.2) (dotted curves) with  $\beta = \beta_S$  and a non-fully random graph of connection at time t = 0.

# **Transmission driven only by I-individuals**

Define  $S_n(t)$  the number of susceptible which have been chosen n-times for a contact by an infectious (at time t)



Figure 8: Structured diagram of the population in term of contacts.

$$\begin{cases} S_{0}' = \nu_{c} \left[ (1 - p_{I}) S_{1}(t) - \frac{I(t)}{N} S_{0}(t) \right] + \eta_{R} S_{1}(t) \\ S_{1}' = \nu_{c} \left[ \frac{I(t)}{N} S_{0}(t) + (1 - p_{I}) 2S_{2}(t) - S_{1}(t) - \frac{I(t)}{N} S_{1}(t) \right] + \eta_{R} [2S_{2}(t) - S_{1}(t) \\ \dots \\ S_{n}' = \nu_{c} \left[ \frac{I(t)}{N} S_{n-1}(t) + (1 - p_{I}) (n + 1) S_{n+1}(t) - nS_{n}(t) - \frac{I(t)}{N} S_{n}(t) \right] \\ + \eta_{R} [(n + 1) S_{n+1}(t) - nS_{n}(t)] \\ \dots \\ I' = \nu_{c} p_{I} \sum_{n=1}^{+\infty} nS_{n}(t) - \eta_{R} I(t) \\ R' = \eta_{R} I(t). \end{cases}$$

$$(4.4)$$





Figure 11: Comparison of the IBM (solid curves), the new SIR model (4.10) (dotted curves), and the classical SIR model (1.1) (dashed curves) with  $\beta = \beta_S$ .

# Happy birthday Chris!