Post-Harvest Diseases of Apples: From Spore Dispersal to Epidemiology

Rebecca C. Tyson

Louise Nelson

Meghan Dutot, Katrina Williams

UBC Okanagan, Kelowna, BC

Post-Harvest Diseases

Fungal infection causes severe decay of apples during storage

Spore Dispersal to Epidemiology

Secondary Inoculation

Disease Incidence and Orchard Management

Assumption : There is a direct causal relationship between orchard management practices and disease incidence on stored fruit.

Evidence :

- Spotts et. al. (2009) At-harvest prediction of grey mould risk in pear fruit in long-term cold storage. Crop Protection 28(5):414–420.
- Spotts, R.A., Sanderson, P.G., Lennox, C.L., Sugar, D., and Cervantes, L.A. 1998. Wounding, wound healing and staining of mature pear fruit. *Postharvest Biology and Technology* 13:27-36.

Field Study

In the Orchard: Spore presence

Spore presence data predicted very little.

Spore Dispersal to Epidemiology

Secondary Inoculation

Model #1: Spore Dispersal

Source: Stockie, J.M. (2010) The mathmatics of atmopheric dispersion modelling. Atmopheric Environment 44:1097-1107

Gaussian Plume Model for a Point Source

Steady-State solution:

$$C(r, y, z) = \frac{Q}{4\pi u r} \exp\left(-\frac{y^2}{4r}\right) \left[\exp\left(-\frac{(z-H)^2}{4r}\right) + \exp\left(-\frac{(z+H)^2}{4r}\right)\right]$$

where

$$r = \frac{1}{u} \int_0^x K(\xi) d(\xi)$$

and where

$$C = concentration of contaminant$$

(x, y, z) = cartesian coordinates centred at the source

$$u = wind velocity$$

$$H =$$
 height of the source

Q = emission rate

Assumptions

- 1. contaminant emitted at a constant rate and constant height
- 2. constant wind velocity aligned with positive x-axis
- 3. parameters are time-independant & the time scale is long
- 4. eddy diffusivities, K, functions of x only & diffusion is isotropic
- 5. wind velocity is sufficiently large so that diffusion in the x-direction is negligible
- 6. variations in topography are negligible
- 7. the contaminant does not penetrate the ground

Concentration Profiles

Orchard & Receptor Layout

How many spore receptors does it take to get an accurate measure of spore presence?

Simulation Experiments

Consider

S = measure of total spore presence detected by t = T

$$= S(C(\vec{X_s}), n_r, T, \vec{W}, n_s),$$

where

 $n_r = **$ number of spore receptors $(0 \le n \le 100),$

$$T =$$
 simulation time,

$$\vec{W}$$
 = vector of wind data for $(0 \le t \le T)$,

 n_s = number of spore sources,

 $\vec{X_s}$ = position of spore sources.

- **9** Test: optimal n_r
- Experiment: fix all parameters, Replicates (20): vary $\vec{X_s}$.

Simulation Results - Spore Detection

Post-Harvest Diseases of Apples: From Spore Dispersal to Epidemiology - p. 14/36

Simulation Results - Monthly Averages

Simulation Results - Percent Nonzero Detection

Simulation Results - Receptor Arrangement

Simulation Results - Receptor Arrangement

Simulation Results - Receptor Arrangement

Spore Dispersal to Epidemiology

Secondary Inoculation

Model #2: Epidemiology - Why?

- It is expensive to open the storage rooms to assess the extent of disease.
- Accurate prediction of disease-free storage periods would prevent major crop losses.

Model #2: Epidemiology

Fungal Growth Model

Adapted From: Lamour et.al. (2002) Quasi-steady state approximation to a fungal growth model Journal of Mathematics Applied in Medicine and

Biology 19:163-183

Disease Spread

Disease Spread - SIR

Infection spread from one apple to another is given by

$$f(N,t) = \mathbf{1}(N) \ p \ \gamma(t),$$

where

N = number of nearest neighbours that have $B(t) > B_{min}$

$$p = baseline infection rate$$

$$\gamma(t) =$$
 susceptibility function, $\gamma'(t) > 0$

Results - Initial Infection

Results - Spread & Susceptibility

Results - Storage Duration

Results - Rate of Infection Spread

		Storage Duration (months)		
Factor	Treatment	2	5	9
Location	Center	0.47	2.20	10.23
	Side	0.23	1.33	5.20
	Corner	0.20	0.70	2.77
Aggregation	Clumped	0.50	3.20	13.17
	Dispersed	1.57	9.57	41.80

Results - 3D

Conclusions

The accumulation of rare events over a long period of time mean high variability in the outcome. Predictable:

- number and placement of orchard receptors needed to obtain reliable measure of spore presence
- storage time for which risk of unacceptable crop loss is acceptable

Hypothesis

CA storage

Correlations with Spore Presence

Significant correlations between:

. air DNA

- \checkmark wind direction (p = 0.01)
- 2. tissue DNA
 - \checkmark average temp (p = 0.017)
 - average temp day before measurement (p = 0.028)
 - rainfall day before measurement (p = 0.038)
 - **•** maximum wind speed (p = 0.014)

Regression of (2) gives $R^2 = 0.023$ and $\sigma = 0.001$.

Correlations with Disease Incidence

Significant correlations between:

percent infected

- *m*, number of months in storage (p = 0.000)
- C_i , average temp last *i* days (p = 0.005, 0.000 & 0.003)
- R_i , rainfall during last *i* days (p = 0.000 & -0.032)
- Sp_i , average tissue spore count last *i* days (p = 0.0006 & 0.000)

● *i* = 50, 14 or 1

R^2	parameters included
0.325	R_{14}
0.416	R_{14} and m
0.491	R_{14} , m , and C_{14}
0.501	R_{14} , m , C_{14} , and Sp_{14}

Modified Model with Absorption

$$C(x, y, z) = \frac{Q}{2\pi u} \frac{1}{\sigma_z} \exp\left(\frac{-y^2}{2\sigma_y^2}\right) \\ \times \frac{1}{\sigma_z} \left[\exp\left(\frac{-(H-z)^2}{2\sigma_z^2}\right) + R\exp\left(\frac{-(H+z)^2}{2\sigma_z^2}\right)\right]$$

where

$$\sigma_z = K(z_0)ax^b, \qquad \sigma_y = K(z_0)10^p x^q$$

 $a, b, p, q =$ stability class constants, empirical
 $z_0 =$ roughness length
 $R =$ absorption at ground level (1 - reflection, 0 - absorption)

Source: Spijkerboer et. al. (2002) Ability of the Gaussian Plume Model to predict spore dispersal over a potato crop. *Ecological Modelling* **155**:1-18

Vertical Plume

Source: Stockie, J.M. (2010) The mathmatics of atmopheric dispersion modelling. Atmopheric Environment 44:1097-1107