
Vlastimil Krivan

Biology Center
and

Faculty of Science
Ceske Budejovice
Czech Republic

vlastimil.krivan@gmail.com

www.entu.cas.cz/krivan

The Ideal Free Distribution: from hypotheses to tests
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1. Distribution of a single species among two habitats: Swans and Fish

2. Distribution of a two fish species: A test with fish

3. Population dynamics and distribution of a single population: A test
with bacteria growing on two sugars

Talk outline
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1. How does a single population of a fixed size distribute in a heterogeneous
space?
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Fish distribution (Milinski, 1979)
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mi = abundance in the i−th patch

r1 r2m1

ri = resource input rate in patch i

Vi =
resource input rate

animal abundance in the patch
= ri

mi

m2

M = m1 +m2 is the total abundance

The population distribution: pi =
mi

M = ri
r1+r2

The Parker matching principle
(Parker 1978)
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The Ideal Free Distribution

Definition (Fretwell and Lucas 1969). Population distribution p = (p1, . . . , pn)
is called the Ideal Free Distribution if payoffs in the occupied habitats are the
same and maximal.

V1(p1) = · · · = Vk(pk) =: V ? ≥ Vj(0) for j = k + 1, · · · , n.

Dual meaning of p = (p1, . . . , pn), p1 + · · ·+ pn = 1:

1. Population distribution

2. For a monomorphic population it is a strategy of an individual (pi is the
proportion of the lifetime an individual spends in patch i)
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V1(p1) = · · · = Vk(pk) =: V ? ≥ Vj(0) for j = k + 1, · · · , n.

The IFD as a game theoretical concept: The Habitat Selection
Game (Cressman and Krivan, 2006)

Proposition. Let payoffs be negatively density dependent. Then the strategy
corresponding to the Ideal Free Distribution is the Nash equilibrium of the Habi-
tat selection game.

Proposition. Let payoffs be negatively density dependent. Then the strategy
corresponding to the IFD is an ESS of the Habitat selection game.
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2. How do two interacting  populations of a fixed size distribute in a 

heterogeneous space consisting of two patches?

Gerbillus pyramidum

Gerbillus allenbyi

Northern Collared Lemming
American Brown Lemming

Tests with rodents (Rosenzweig 1979,…, Morris 1987,…)
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Isolegs (Rosenzweig 1979) and Isodars (Morris 1987)

An isoleg is a curve in the species 1-species 2 density phase space that separates
regions with qualitatively different species distributions (e.g., species 1 occupies
habitat A only, species 2 occupies both habitats and similarly for species B)
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m2 n2m1 n1

Patch 1 Patch 2

Fast dispersal

R1 R2

Species 1 payoff in habitat i : Vi(p, q;M,N) = ri

³
1− piM

Ki
− αi qiN

Ki

´
i = 1, 2

Species 2 payoff in habitat j: Wj(p, q;M,N) = sj

³
1− qjN

Lj
− βj pjM

Lj

´
j = 1, 2.

M = m1 +m2

N = n1 + n2

mi = piM

ni = qiN

The IFD for two competing species (Krivan and Sirot 2002)
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Equal payoff lines at
fixed population abundances:

V1(p, q;M,N) = V2(p, q;M,N)

W1(p, q;M,N) =W2(p, q;M,N)

Solid line

Dotted line

Equal fitness lines for two competing Lotka-Volterra model
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Equal payoff lines at
fixed population abundances:

V1(p, q;M,N) = V2(p, q;M,N)

W1(p, q;M,N) =W2(p, q;M,N)

Solid line

Dotted line

2-species ESS

2-species ESSNot a 2-species ESS

Two species ESS (Cressman 1992)
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Species 1 payoff in habitat i : Vi(p, q;M,N) = ri

³
1− piM

Ki
− αi qiN

Ki

´
i = 1, 2

Species 2 payoff in habitat j: Wj(p, q;M,N) = sj

³
1− qjN

Lj
− βj pjM

Lj

´
j = 1, 2.

Condition for the 2-species ESS for the Lotka-Volterra competition
model (Krivan and Sirot, 2002; Cressman et al. 2004)

Proposition. Let us assume that the interior Nash equilibrium for the distri-
bution of two competing species at population densities M and N exists. If

r1s1K2L2(1−α1β1)+r1s2K2L1(1−α1β2)+r2s1K1L2(1−α2β1)+r2s2K1L1(1−α2β2) > 0

Then this distributional equilibrium is a 2-species ESS.
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Vi(p, q;M,N) = ri
³
1− piσM

Ki
− αiqi(1−σ)N

Ki

´
i = 1, 2

Wj(p, q;M,N) = sj

³
1− qjσN

Lj
− βjpj(1−σ)M

Lj

´
j = 1, 2.

σ = the relative strength of intraspecific competition to interspecific competition
σ=0: interspecific competition only;
σ=1: intraspecific competition only

The two species IFD (Krivan and Sirot, 2002)
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0 < q1 < 1

p1 = 1
q1 = 1
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p1 = 0
0 < q1 < 1
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r1 r2

Joint distribution of two fish species (Berec et al. 2006)

Species M : Minnow (Tanichthys albonubes )

Species D: Danio (Danio aequipinnatus)
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M in n o w fi t n es s : V = λ M p1 R 1 + λ M p 2 R 2

D a n i o fi tn e s s: W = λ D q 1 R 1 + λ D q2 R 2

Joint distribution of two fish species (Berec et al. 2006)

Species M : Minnow

Species D: Danio

Ri (i = 1, 2) : standing food density at patch i

ri (i = 1, 2) : rate of feeding in patch i

λMR1 = λMR2

λDR1 = λDR2

⇐⇒ R1 = R2

Equal fitness lines:

dR1
dt

= r1 − (λMp1R1M + λDR1q1D)

dR2
dt

= r2 − (λMp2R2M + λDR2q2D)
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The IFD 2-species distribution

r1
λMp1M + λDq1D

=
r2

λMp2M + λDq2D

And the corresponding distribution satisfies:

(p1 − r1
r1 + r2

)λMM + (q1 − r1
r1 + r2

)λDD = 0

p1

q1

At the resource equilibrium the fish distribution satisfies:



19

Distribution of two fish species (Berec et al. 2006)
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M in n o w fi t n es s : V = λ M p1 R 1 + λ M p 2 R 2

D a n i o fi tn e s s: W = λ D q 1 R 1 + λ D q2 R 2

Joint distribution of two fish species (Berec et al. 2006)

Observation:

1. Minnows are stronger competitors than Danios, because they move faster
(λM > λD). Thus, Minnows is competitively dominant species

2. Minnows quickly distribute following their own single-species IFD, i.e.,
pi =

ri
r1+r2

, i = 1, 2

3. This balances the resources at both patches, i. e., R1 = R2

4. Danios distribute 50:50 because both patches are equally profitable for
them
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3. How does a single population distribute in a 

heterogeneous space when it undergoes demographic changes?
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Bacterial growth on two substrates

Adaptation: Evolution should result in optimal timing of the diauxic switch
so that bacterial fitness maximizes

Lac operon: Molecular mechanism that regulates diauxic growth (F. Jacob
and J. Monod, Nobel prize 1965)

Question: Is the lac operon evolutionarily optimized?

Diauxie (J. Monod): microbial cells consume two or more
substrates in a sequential pattern, resulting in two separate growth
phases (phase I and II). During the first phase, cells preferentially
metabolize the sugar on which it can grow faster (often glucose).
Only after the first sugar has been exhausted do the cells switch
to the second. At the time of the ”diauxic shift”, there is often
a lag period during which cells produce the enzymes needed to
metabolize the second sugar.
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S1 S2

C

S1, S2 - sugar concentration (eg. glucose and lactose)

C - bacterial population

ui -bacterial preference for the i−th (u1 + u2 = 1, i = 1, 2) sugar

u2u1

Michaelis-Menten batch population kinetics

dS1
dt

= − 1
Y1

S1
K1 + S1

u1C

dS2
dt

= − 1
Y2

S2
K2 + S2

u2C

dC

dt
=

µ
μ1S1
K1 + S1

u1 +
μ2S2
K2 + S2

u2

¶
C
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Fitness= per capita bacterial population growth rate i.e.,

1

C

dC

dt
=

μ1S1
K1 + S1

u1 +
μ2S2
K2 + S2

u2 7→ max
ui

The optimal strategy:

μ1S1
K1 + S1

>
μ2S2
K2 + S2

=⇒ u1 = 1

μ1S1
K1 + S1

<
μ2S2
K2 + S2

=⇒ u1 = 0

Optimal bacterial strategy
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dS1
dt

= − 1
Y1

S1
K1 + S1

u1C

dS2
dt

= − 1
Y2

S2
K2 + S2

u2C

dC

dt
=

µ
μ1S1
K1 + S1

u1 +
μ2S2
K2 + S2

u2

¶
C

u1 =

(
1 when μ1S1

K1+S1
> μ2S2

K2+S2

0 when μ1S1
K1+S1

< μ2S2
K2+S2

μ1S1
K1+S1

= μ2S2
K2+S2

Michaelis-Menten batch population kinetics with optimal sugar

switching
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Y

0.454.50.95lactose

0.50.20.82xylose

0.520.010.94fruktose

0.50.051.00arabinose

0.520.011.08glucose

μ K Y

Growth rate parameters of Klebsiela oxytoca on single substrate

(Kompala et. al. 1986)
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Conclusion: There is no significant difference between observed times of 
switching and predicted times of switching. Thus, bacteria switch between 
different sugars at times at which their fitness is maximized. This shows that 
the lac operon is evolutionarily optimized.

Predicted and observed switching times
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Bacteria

Sugar 1

Sugar 2
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