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Talk outline

1. Distribution of a single species among two habitats. Swans and Fish
2. Distribution of atwo fish species: A test with fish

3. Population dynamics and distribution of a single population: A test
with bacteria growing on two sugars



1. How does a single population of a fixed size distribute in a heterogeneous
space?




Swan distribution

Distribution of 8 swans
among two feeding patches
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Fish distribution (Milinski, 1979)
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Fig. 1: First experiment (profitability ratio 5:1): Number of fish in the less profitable half

of the tank; dots are means of 8 rrials with 6 fishes each measured atr 2 205 clock signal;

bars give standard deviations (included to give some indication of variance, though data

are not normally-distributed); arrow points to start of feeding; dotted line indicates the
number of fish predicted according 1o profitability ratio



The Parker matching principle
(Parker 1978)

<

m; = abundance in the :—th patch

M = mq + ms is the total abundance

r; = resource input rate in patch i

resource Input rate o
animal abundance in the patch ~— ms
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m; T

The population distribution: p; = 37 = =+




The Ideal Free Distribution

Definition (Fretwell and Lucas 1969). Population distribution p = (p1,...,Pn)
15 called the Ideal Free Distribution if payoffs in the occupied habitats are the
same and mazximal.

Vilpr) == Vi(px) == V*>V;(0) for j=k+1,--- ,n.

Dual meaning of p = (p1,...,0n), P1 + -+ pn = L:

1. Population distribution

2. For a monomorphic population it is a strategy of an individual (p; is the
proportion of the lifetime an individual spends in patch %)



The IFD as a game theoretical concept: The Habitat Selection
Game (Cressman and Krivan, 2006)

Vilpr) =+ =Vi(pe) = V*>V;(0) for j =k +1,--- ,n.

Proposition. Let payoffs be negatively density dependent. Then the strategy

corresponding to the Ideal Free Distribution is the Nash equilibrium of the Habi-
tat selection game.

Proposition. Let payoffs be negatively density dependent. Then the strategy
corresponding to the IFD is an ESS of the Habitat selection game.



2. How do two interacting populations of afixed size distributein a

heterogeneous space consisting of two patches?

Northern Collared Lemming
American Brown Lemming

Gerhillus allenbyi

Tests with rodents (Rosenzweig 1979,..., Morris 1987,...) 5



Isolegs (Rosenzweig 1979) and Isodars (Morris 1987)

An isoleg is a curve in the species 1-species 2 density phase space that separates
regions with qualitatively different species distributions (e.g., species 1 occupies
habitat A only, species 2 occupies both habitats and similarly for species B)
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ACTIVITY DENSITY OF G. pyramidum

FiG. 5. Preferences of Gerbillus allenbyi for the semista-
bilized dune (SA) drawn in a state space of activity densities
of the two species (AGA, AGP). Data with AGP < 10 were
excluded since, in this region, all G. allenbyi preferences for
the semistabilized dune were > 0.40. Preferences were divided
into either SA > 0.40 (+) or 0 = SA = 0.40 (0). The broken
fading lines show our lack of confidence in the actual shape
or slope of the isoleg in the regions where AGA = 60 or AGA

< 30. For further information see Results: The isolegs: G.
allenbyi.



The IFD for two competing species (Krivan and Sirot 2002)

@ O\ @

NG N
Patch 1 Patch 2
N =nq + no ni:qiN

Species 1 payoff in habitat i : Vi(p,q¢; M, N) =, (1 — % — %) i=1,2

Species 2 payoff in habitat j: W,(p,q; M,N) =s; (1 — % — ij.j—iM) j=1,2.
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Equal fitness lines for two competing Lotka-Volterra model

Equal payoff lines at N, M, N) = Va(p,¢; M, N) Solid line
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Two species ESS (Cressman 1992)

Equal payoff lines at Vi(p,¢; M,N) = Va(p,q; M, N) Solid line
fixed population abundances. 1/, (p,q; M, N) = Wa(p,q; M, N) Dotted line
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Condition for the 2-species ESS for the Lotka-Volterra competition
model (Krivan and Sirot, 2002; Cressman et al. 2004)

Species 1 payoff in habitat i : V;(p,q; M, N) =1, (1 — p;(]y — O‘il‘éN) i=1,2

Species 2 payoff in habitat j: W;(p,q; M,N) =s; (1 — qij.v — ﬁjﬁ.M

Proposition. Let us assume that the interior Nash equilibrium for the distri-
bution of two competing species at population densities M and N exists. If

r151KaLo(1—a1f1)+r152Ko L1 (1—aqB2)+res1 K1 La(1—agfB1)+rese K1 Li(1—agB2) > 0

Then this distributional equilibrium is a 2-species ESS.
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The two species IFD (Krivan and Sirot, 2002)

o = the relative strength of intraspecific competition to interspecific competition
o=0: interspecific competition only;
o=1: intraspecific competition only
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Vilp,gs M.N) =i (1 B - maGeal)

W;p,gs M, N) = s; (1— 22K - BmiQM) g p
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o = 1 (Intraspec.comp.only) oc=0.8
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Joint distribution of two fish species (Berec et al. 2006)

ﬂ Sl f'r—
&4 Water fleas

(Daphnia)

Species M: Minnow ( Tanichthys albonubes )

Species D: Danio (Danio aequipinnatus)
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Joint distribution of two fish species (Berec et al. 2006)

Species M: Minnow
Species D: Danio

R; (i =1,2): standing food density at patch ¢
r; (i =1,2) : rate of feeding in patch i

dR
d_tl = 11— (Aup1tRiM + ApRyq, D)
dR V7

Equal fitness lines: )\, R, = \i,/R,
<~ R =Ry
)\DRl — >\DR2
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The IFD 2-species distribution

At the resource equilibrium the fish distribution satisfies:
1 . T2
AupiM +Apgn D Appa M 4 Apga D

And the corresponding distribution satisfies:

1 1
— M+ — ApD =0
(pl r1+r2) M (611 r1+r2> D
.8 —._+ i
qd1
.4 L %\hx;
P1
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Distribution of two fish species (Berec et

al. 2006)

Minnow preference ful‘,|

Danio preference (v))
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Joint distribution of two fish species (Berec et al. 2006)

Observation:

1.

Minnows are stronger competitors than Danios, because they move faster
(A > Ap). Thus, Minnows is competitively dominant species

Minnows quickly distribute following their own single-species IFD, i.e.,

. — T .
p’l,_ T1_|_f,~277’_1?2

. This balances the resources at both patches, i. e., R1 = Ry

Danios distribute 50:50 because both patches are equally profitable for
them
20



3. How does a single population distribute in a

heterogeneous space when it undergoes demographic changes?
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Bacterial growth on two substrates

100
Diauxie (J. Monod): microbial cells consume two or more & g0 -
substrates in a sequential pattern, resulting in two separate growth o 1 I1
phases (phase I and II). During the first phase, cells preferentially s °°
metabolize the sugar on which it can grow faster (often glucose). G 40
Only after the first sugar has been exhausted do the cells switch 2 204 /I
to the second. At the time of the ”diauxic shift”, there is often 0 I—
a lag period during which cells produce the enzymes needed to 0 2 4 6 8
metabolize the second sugar. Time (hours)

Lac operon: Molecular mechanism that regulates diauxic growth (F. Jacob
and J. Monod, Nobel prize 1965)

Adaptation: Evolution should result in optimal timing of the diauxic switch
so that bacterial fitness maximizes

Question: Is the lac operon evolutionarily optimized?
22



Michaelis-Menten batch population kinetics

as _ 1S
dt YiK, +8;
dS, 1S,

©
ué \Uz | dt _Y2K2+Szu20
O,

dC B ,ulSl M2S2
. dt ( * )C

C

u U
Ki+8 & Ky+8y °

S1, Ss - sugar concentration (eg. glucose and lactose)
C' - bacterial population

u; -bacterial preference for the i—th (u; +uy =1, 7 = 1,2) sugar
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Optimal bacterial strategy

Fitness= per capita bacterial population growth rate i.e.,

l@; P51 Uy + 1252 Uy — max
Cdt Kl—l—Sl ! KQ—I—SQ 2 Ui
The optimal strategy:
H1S1 [2S2
> — up = 1
Ki+51 K2+ 52
S S
101 202 u =0

<
Ky + 51 Ky 4 55



Michaelis-Menten batch population kinetics with optimal sugar
switching

d_S]L _ 1 S1 u O
a ~ YK +5
dSo 1 So

dt Yo Ko + 55

dC ,ulSl ,U2S2

C

z - \mrs“ K 5%
1+ o1 2 + 02
1 h 1151 p2S2
WReLl 77779 Kot S
P 1+01 2+02
1 =
p1S1 p2S2
O When e < T
Ki1+54 Ko+So
2
|
LsE oy piSi  _ _p2So
15 ! K1+51 Ko+Ss
I" Fig. 1. Switching curve (dashed hne) lor the growth of K oxyioce on a
125 1 .'l ] mixture of glucose (g = 1.08, Ky =001, ¥ =0.52) and arabinose
- |k / - ] (g = L0O0O, K> =0.05 ¥:=10.35) The two solid lmes are solutions of
.’II model (1} for batch bactenial growth (D = 0). Parameters taken from
075 F JI,-"I . Kompala et al. { 1984).
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Growth rate parameters of Klebsiela oxytoca on single substrate
(Kompala et. al. 1986)

1 K Y
glucose (1 g 0.01 0.52
arabinose | 1 00 0.05 0.5
fruktose | ) g4 0.01 0.52
xylose 0.82 0.2 0.5
lactose 0.95 4.5 0.45
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Predicted and observed switching times

Substrates Estimated switch time Predicted switch time
glucose—xylose 4.2 4.2
glucose—xylose 1.7 1.6
glucose—xylose 2 1.8
glucose—lactose 5 4.1
glucose—lactose 4.2 3.8
glucose—lactose 4.2 3.8
glucose—lactose 4.6 4.2
glucose—arabinose 4 3.7
glucose—arabinose 4 3.8
glucose—fructose ) 4.5 4.8

Estimated time of switching from data given in Kompala et al
(1986) and predicted time of switching from model.

Conclusion: Thereis no significant difference between observed times of
switching and predicted times of switching. Thus, bacteria switch between
different sugars at times at which their fitness is maximized. This shows that
the lac operon is evolutionarily optimized.



Population dynamics of bacteria

feedine on two substrates .
& Bacteria

— |
=
O
> 0.1 Sugar 1
S oo1] o
. Sugar 2
| : 10
(A) time
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