The ideal free strategy with weak Allee effect

Daniel S. Munther

Centre for Disease Modelling, York University

December 15, 2012

We consider two types of movement:

We consider two types of movement:

• Unconditional dispersal - independent of habitat quality and population density

We consider two types of movement:

- Unconditional dispersal independent of habitat quality and population density
- Conditional dispersal depends on one or both of the above factors (and others)

We consider two types of movement:

- Unconditional dispersal independent of habitat quality and population density
- Conditional dispersal depends on one or both of the above factors (and others)

Reaction-diffusion-(advection) model

We consider two types of movement:

- Unconditional dispersal independent of habitat quality and population density
- Conditional dispersal depends on one or both of the above factors (and others)

Reaction-diffusion-(advection) model

Quantify movement phenotype via flux: diffusive and advective

$$u_t = \mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$v_t = \nu \nabla \cdot [\nabla v - v \nabla Q(x)] + v[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty), \qquad (1)$$

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - v \nabla Q(x)] + v[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - u \nabla P] \cdot n = [\nabla v - v \nabla Q] \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$
(1)

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - v \nabla Q(x)] + v[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - u \nabla P] \cdot n = [\nabla v - v \nabla Q] \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$
(1)

• Species have same population dynamics but different movement strategies

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - v \nabla Q(x)] + v[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - u \nabla P] \cdot n = [\nabla v - v \nabla Q] \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$
(1)

- Species have same population dynamics but different movement strategies
- m(x) > 0 is nonconstant (spatially inhomogeneous)

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - v \nabla Q(x)] + v[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - u \nabla P] \cdot n = [\nabla v - v \nabla Q] \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$
(1)

- Species have same population dynamics but different movement strategies
- m(x) > 0 is nonconstant (spatially inhomogeneous)
- Semi-trivial steady states: $(u^*, 0)$ and $(0, v^*)$

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - v \nabla Q(x)] + v[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - u \nabla P] \cdot n = [\nabla v - v \nabla Q] \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$
(1)

- Species have same population dynamics but different movement strategies
- m(x) > 0 is nonconstant (spatially inhomogeneous)
- Semi-trivial steady states: $(u^*, 0)$ and $(0, v^*)$
- Is there a strategy P(x) which cannot be invaded?

$$\mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \quad \text{in} \quad \Omega,$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on} \quad \partial \Omega.$$

$$\mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \quad \text{in} \quad \Omega,$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on} \quad \partial \Omega.$$

• If
$$P(x) = \ln m(x)$$
, $u \equiv m$ is a positive steady state.

$$\mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \quad \text{in} \quad \Omega,$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on} \quad \partial \Omega.$$

- If $P(x) = \ln m(x)$, $u \equiv m$ is a positive steady state.
- No net movement:

$$\nabla u - u \nabla P(x) = \nabla m - m \nabla \ln m = \nabla m - \nabla m = 0$$

• Diffusion creates a mismatch between population density at steady state and habitat quality m(x) (Cantrell et al. 2010)

$$\mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \quad \text{in} \quad \Omega,$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on} \quad \partial \Omega.$$

- If $P(x) = \ln m(x)$, $u \equiv m$ is a positive steady state.
- No net movement:

$$\nabla u - u \nabla P(x) = \nabla m - m \nabla \ln m = \nabla m - \nabla m = 0$$

• Fitness equilibrated throughout the habitat: $\frac{m}{u} \equiv 1$.

$$\mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \quad \text{in} \quad \Omega,$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on} \quad \partial \Omega.$$

- If $P(x) = \ln m(x)$, $u \equiv m$ is a positive steady state.
- No net movement:

$$\nabla u - u \nabla P(x) = \nabla m - m \nabla \ln m = \nabla m - \nabla m = 0$$

- Fitness equilibrated throughout the habitat: $\frac{m}{u} \equiv 1$.
- We call $P = \ln m$ an Ideal Free Strategy (IFS).

Daniel S. Munther The ideal free strategy with weak Allee effect 5/17

• Choose most suitable habitat (ideal)

- Choose most suitable habitat (ideal)
- 2 Can move into any desired region (free)

- Choose most suitable habitat (ideal)
- 2 Can move into any desired region (free)

Ideal Free Distribution: A species will aggregate in a location proportionately to the amount of available resources in that location

- Choose most suitable habitat (ideal)
- 2 Can move into any desired region (free)

Ideal Free Distribution: A species will aggregate in a location proportionately to the amount of available resources in that location

Before feeding, randomly distributed

Theorem 1

(Averill et al.) Suppose that $P = \ln m$ and $Q - \ln m$ is nonconstant. Then $(0, v^*)$ is unstable and $(u^*, 0)$ is globally asymptotically stable.

Theorem 1

(Averill et al.) Suppose that $P = \ln m$ and $Q - \ln m$ is nonconstant. Then $(0, v^*)$ is unstable and $(u^*, 0)$ is globally asymptotically stable.

• Biologically, $P = \ln m$ is a global ESS.

Theorem 1

(Averill et al.) Suppose that $P = \ln m$ and $Q - \ln m$ is nonconstant. Then $(0, v^*)$ is unstable and $(u^*, 0)$ is globally asymptotically stable.

- Biologically, $P = \ln m$ is a global ESS.
- Main Question: Does this result still hold when u(m u v) is replaced by $u^2(m u v)$ in model (1)?

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^{2}(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - \beta v \nabla \ln(m)] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty), \quad (2)$$

$$[\nabla u - u \nabla \ln(m)] \cdot n = [\nabla v - \beta v \nabla \ln(m)] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty).$$

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^{2}(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - \beta v \nabla \ln(m)] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty), \quad (2)$$

$$[\nabla u - u \nabla \ln(m)] \cdot n = [\nabla v - \beta v \nabla \ln(m)] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty).$$

Why is this interesting?

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^{2}(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - \beta v \nabla \ln(m)] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty), \quad (2)$$

$$[\nabla u - u \nabla \ln(m)] \cdot n = [\nabla v - \beta v \nabla \ln(m)] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty).$$

Why is this interesting?

• *u* is subject to weak Allee effect (species no longer have the same population dynamics)

$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^{2}(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - \beta v \nabla \ln(m)] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty), \quad (2)$$

$$[\nabla u - u \nabla \ln(m)] \cdot n = [\nabla v - \beta v \nabla \ln(m)] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty).$$

Why is this interesting?

- *u* is subject to weak Allee effect (species no longer have the same population dynamics)
- Interplay between IFS and weak Allee effect
$$u_{t} = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^{2}(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - \beta v \nabla \ln(m)] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty), \quad (2)$$

$$[\nabla u - u \nabla \ln(m)] \cdot n = [\nabla v - \beta v \nabla \ln(m)] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty).$$

Why is this interesting?

- *u* is subject to weak Allee effect (species no longer have the same population dynamics)
- Interplay between IFS and weak Allee effect
- Invasion dynamics not useful for any $\beta \in [0,\infty)$

Suppose $m \in C^2(\overline{\Omega})$ is positive and non-constant. Then for $\beta = 0$ and any μ , $\nu > 0$, any solution (u, v) of (2) with nonnegative, not identically zero initial data converges to (m, 0) in $L^{\infty}(\Omega)$ as $t \to \infty$.

Suppose $m \in C^2(\overline{\Omega})$ is positive and non-constant. Then for $\beta = 0$ and any $\mu, \nu > 0$, any solution (u, ν) of (2) with nonnegative, not identically zero initial data converges to (m, 0) in $L^{\infty}(\Omega)$ as $t \to \infty$.

• *u* cannot only invade *v*, but it drives *v* to extinction no matter its diffusion rate

Suppose $m \in C^2(\overline{\Omega})$ is positive and non-constant. Then for $\beta = 0$ and any $\mu, \nu > 0$, any solution (u, ν) of (2) with nonnegative, not identically zero initial data converges to (m, 0) in $L^{\infty}(\Omega)$ as $t \to \infty$.

- *u* cannot only invade *v*, but it drives *v* to extinction no matter its diffusion rate
- IFS offsets the weak Allee effect

• System (2) has two semi-trivial steady states: (m,0) and $(0,v^*)$

• System (2) has two semi-trivial steady states: (m,0) and $(0,v^*)$

$$u_t = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^2(m - u) \text{ in } \Omega \times (0, \infty)$$
$$[\nabla u - u \nabla \ln(m)] \cdot n = 0 \text{ on } \partial\Omega \times (0, \infty)$$

• System (2) has two semi-trivial steady states: (m, 0) and $(0, v^*)$

$$u_t = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^2(m - u) \text{ in } \Omega \times (0, \infty)$$
$$[\nabla u - u \nabla \ln(m)] \cdot n = 0 \text{ on } \partial\Omega \times (0, \infty)$$

Use Lyapunov approach with $E : C(\overline{\Omega}) \to \mathbb{R}$ where $E(u) = \int_{\Omega} u + \frac{m^2}{u}$ to show $u^* = m$ is unique positive steady state.

• System (2) has two semi-trivial steady states: (m, 0) and $(0, v^*)$

$$u_t = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^2(m - u) \text{ in } \Omega \times (0, \infty)$$
$$[\nabla u - u \nabla \ln(m)] \cdot n = 0 \text{ on } \partial\Omega \times (0, \infty)$$

Use Lyapunov approach with $E : C(\overline{\Omega}) \to \mathbb{R}$ where $E(u) = \int_{\Omega} u + \frac{m^2}{u}$ to show $u^* = m$ is unique positive steady state.

Note:
$$\frac{d}{dt}E(u(\cdot,t)) = -\int_{\Omega} \frac{\mu 2m |\nabla(u/m)|^2}{(u/m)^3} - \int_{\Omega} (m^2 - u^2)(m-u) \le 0.$$

• System (2) has two semi-trivial steady states: (m, 0) and $(0, v^*)$

$$u_t = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^2(m - u) \text{ in } \Omega \times (0, \infty)$$
$$[\nabla u - u \nabla \ln(m)] \cdot n = 0 \text{ on } \partial\Omega \times (0, \infty)$$

Use Lyapunov approach with $E : C(\overline{\Omega}) \to \mathbb{R}$ where $E(u) = \int_{\Omega} u + \frac{m^2}{u}$ to show $u^* = m$ is unique positive steady state.

Note:
$$\frac{d}{dt}E(u(\cdot,t)) = -\int_{\Omega} \frac{\mu 2m |\nabla(u/m)|^2}{(u/m)^3} - \int_{\Omega} (m^2 - u^2)(m-u) \le 0.$$

No positive coexistence states

• System (2) has two semi-trivial steady states: (m, 0) and $(0, v^*)$

$$u_t = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^2(m - u) \text{ in } \Omega \times (0, \infty)$$
$$[\nabla u - u \nabla \ln(m)] \cdot n = 0 \text{ on } \partial\Omega \times (0, \infty)$$

Use Lyapunov approach with $E : C(\overline{\Omega}) \to \mathbb{R}$ where $E(u) = \int_{\Omega} u + \frac{m^2}{u}$ to show $u^* = m$ is unique positive steady state.

Note:
$$\frac{d}{dt}E(u(\cdot,t)) = -\int_{\Omega} \frac{\mu 2m |\nabla(u/m)|^2}{(u/m)^3} - \int_{\Omega} (m^2 - u^2)(m-u) \le 0.$$

• No positive coexistence states Use functional $E(u, v) = \int_{\Omega} \frac{m^2}{u} + 2m \ln u - u + \frac{v^2}{2}$. If (\bar{u}, \bar{v}) existed, then $\frac{dE}{dt}(\bar{u}, \bar{v}) = 0$ which leads to a contradiction.

• System (2) has two semi-trivial steady states: (m,0) and $(0,v^*)$

$$u_t = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^2(m - u) \text{ in } \Omega \times (0, \infty)$$
$$[\nabla u - u \nabla \ln(m)] \cdot n = 0 \text{ on } \partial\Omega \times (0, \infty)$$

Use Lyapunov approach with $E : C(\overline{\Omega}) \to \mathbb{R}$ where $E(u) = \int_{\Omega} u + \frac{m^2}{u}$ to show $u^* = m$ is unique positive steady state.

Note:
$$\frac{d}{dt}E(u(\cdot,t)) = -\int_{\Omega} \frac{\mu 2m |\nabla(u/m)|^2}{(u/m)^3} - \int_{\Omega} (m^2 - u^2)(m-u) \le 0.$$

• No positive coexistence states Use functional $E(u, v) = \int_{\Omega} \frac{m^2}{u} + 2m \ln u - u + \frac{v^2}{2}$. If (\bar{u}, \bar{v}) existed, then $\frac{dE}{dt}(\bar{u}, \bar{v}) = 0$ which leads to a contradiction. $\frac{dE}{dt} = -\mu \int_{\Omega} \frac{2m |\nabla(u/m)|^2 (1 - (u/m))}{(u/m)^3} - \nu \int_{\Omega} |\nabla v|^2 - \int_{\Omega} ((m - u)^2 - v^2) (m - u - v).$

• (0, v*) is unstable Suppose its stable, then we consider

$$\begin{aligned} \frac{d}{dt} \int_{\Omega} \frac{m^2}{u} &= -\int_{\Omega} \frac{2\mu m |\nabla(u/m)|^2}{(u/m)^3} - \int_{\Omega} m^2 (m-u-v) \\ &\leq -\int_{\Omega} (v^*)^2 (m-v^*) + \epsilon \end{aligned}$$

So $\frac{d}{dt} \int_{\Omega} \frac{m^2}{u} \le -\eta/2 < 0$ for all t > 0. Therefore $\int_{\Omega} \frac{m^2}{u} \le \left(\int_{\Omega} \frac{m^2}{u(x,0)} \right) - (\eta/2)t.$ • (0, v*) is unstable Suppose its stable, then we consider

$$\begin{aligned} \frac{d}{dt} \int_{\Omega} \frac{m^2}{u} &= -\int_{\Omega} \frac{2\mu m |\nabla(u/m)|^2}{(u/m)^3} - \int_{\Omega} m^2 (m-u-v) \\ &\leq -\int_{\Omega} (v^*)^2 (m-v^*) + \epsilon \end{aligned}$$

So
$$\frac{d}{dt} \int_{\Omega} \frac{m^2}{u} \leq -\eta/2 < 0$$
 for all $t > 0$. Therefore
 $\int_{\Omega} \frac{m^2}{u} \leq \left(\int_{\Omega} \frac{m^2}{u(x,0)} \right) - (\eta/2)t.$

• Monotone dynamical system theory to conclude (*m*, 0) is globally asymptotically stable.

Suppose $m \in C^2(\overline{\Omega})$ is positive and non-constant. Then there exists $0 < \beta^* < 1$ such that for all $\beta \in (0, \beta^*)$ and any $\mu, \nu > 0$, any solution (u, v) of (2) with nonnegative, not identically zero initial data converges to (m, 0) in $L^{\infty}(\Omega)$ as $t \to \infty$.

Suppose $m \in C^2(\overline{\Omega})$ is positive and non-constant. Then there exists $0 < \beta^* < 1$ such that for all $\beta \in (0, \beta^*)$ and any $\mu, \nu > 0$, any solution (u, v) of (2) with nonnegative, not identically zero initial data converges to (m, 0) in $L^{\infty}(\Omega)$ as $t \to \infty$.

• Again, *u* is sole winner as IFS is able to still offset the Allee effect.

Suppose $m \in C^2(\overline{\Omega})$ is positive and non-constant. Then there exists $0 < \beta^* < 1$ such that for all $\beta \in (0, \beta^*)$ and any $\mu, \nu > 0$, any solution (u, v) of (2) with nonnegative, not identically zero initial data converges to (m, 0) in $L^{\infty}(\Omega)$ as $t \to \infty$.

- Again, *u* is sole winner as IFS is able to still offset the Allee effect.
- Proof for Theorem 3 is similar to proof of Theorem 2 but more technical. Eliminating the possibility of positive coexistence states is most difficult part.

Remarks

• We conjecture that Theorem 2 holds for all $\beta \in (0, 1)$.

First, $(0, v^*)$ is unstable for $\beta \in (0, 1)$. Second, numerics indicate that there are no positive steady states.

• We conjecture that Theorem 2 holds for all $eta\in(0,1).$

First, $(0, v^*)$ is unstable for $\beta \in (0, 1)$. Second, numerics indicate that there are no positive steady states.

For the β = 1 case, both species are playing IFS and hence can coexist. System (2) has a continuum of positive steady states of the form (sm, (1 − s)m) for s ∈ (0, 1).

• We conjecture that Theorem 2 holds for all $eta \in (0,1).$

First, $(0, v^*)$ is unstable for $\beta \in (0, 1)$. Second, numerics indicate that there are no positive steady states.

- For the β = 1 case, both species are playing IFS and hence can coexist. System (2) has a continuum of positive steady states of the form (sm, (1 − s)m) for s ∈ (0, 1).
- For the $\beta >> 1$ case, we can show that $(0, v^*)$ is unstable.

We conjecture that u (IFS) should be the sole winner as in Theorem 2.

• There exists $\overline{\beta}$ such that for $\beta \in (1, \overline{\beta}]$, $(0, v^*)$ is globally asymptotically stable (seems to hold for general *m*, monotone and non-monotone)

- There exists $\overline{\beta}$ such that for $\beta \in (1, \overline{\beta}]$, $(0, v^*)$ is globally asymptotically stable (seems to hold for general *m*, monotone and non-monotone)
- There exists $\hat{\beta}$ such the for $\beta \in (\bar{\beta}, \hat{\beta})$ there exists a positive coexistence state.

Fundamentally different:

- There exists β
 such that for β ∈ (1, β
], (0, ν*) is globally asymptotically stable (seems to hold for general m, monotone and non-monotone)
- There exists $\hat{\beta}$ such the for $\beta \in (\bar{\beta}, \hat{\beta})$ there exists a positive coexistence state.

Fundamentally different:

• Theorem 1 no longer holds, i.e. the winning strategy is no longer a "resource matching" strategy.

- There exists β
 such that for β ∈ (1, β
], (0, ν*) is globally asymptotically stable (seems to hold for general m, monotone and non-monotone)
- There exists $\hat{\beta}$ such the for $\beta \in (\bar{\beta}, \hat{\beta})$ there exists a positive coexistence state.

Fundamentally different:

- Theorem 1 no longer holds, i.e. the winning strategy is no longer a "resource matching" strategy.
- Biological explanation and mathematical justification?

Numerical example:

Figure: $m(x) = 3e^{-50(x-.2)^2} + 1.7e^{-40(x-.8)^2} + .2$ (black) and u (red) and v (blue), $\mu = 1000$, $\nu = 1000$, $\beta = 1.7$ a) two species at T = 1.5, b) $T = 10^5$.

Numerical example:

• The growth rate for u near x = 0.8 is m(x) - v(x, t) > 0 for all $t > T_0$.

Numerical example:

Figure: $m(x) = 3e^{-50(x-.2)^2} + 1.7e^{-40(x-.8)^2} + .2$ (black) and u (red) and v (blue), $\mu = 1000$, $\nu = 1000$, $\beta = 1.7$ a) two species at T = 1.5, b) $T = 10^5$.

- The growth rate for u near x = 0.8 is m(x) v(x, t) > 0 for all $t > T_0$.
- For β in this range, v can defeat u even when u has significant initial numbers.

• For $\beta \in [0, \beta^*)$ (and we think in $[\beta^*, 1)$ and in $[\beta^{**}, \infty)$), the ideal free disperser dominates.

- For $\beta \in [0, \beta^*)$ (and we think in $[\beta^*, 1)$ and in $[\beta^{**}, \infty)$), the ideal free disperser dominates.
- For $\beta = 1$, coexistence as both species are ideal free dispersers

- For $\beta \in [0, \beta^*)$ (and we think in $[\beta^*, 1)$ and in $[\beta^{**}, \infty)$), the ideal free disperser dominates.
- For $\beta = 1$, coexistence as both species are ideal free dispersers
- For intermediate β > 1, the ideal free strategy is no longer is optimal as it can be invaded.

- R.S. Cantrell, C. Cosner, and Y. Lou, Evolution of dispersal and ideal free distribution, Math Bios. Eng., Vol 7 (2010) 17-36.
- I. Averill, Y. Lou, and D. Munther, On several conjectures from evolution of dispersal, J. Biol. Dynamics, 6 (2012) 117-130.
- D. Munther, The ideal free strategy with weak Allee effect, J. Differential Equations, (2013) in press.
Acknowledgement

• Chris Cosner, Steve Cantrell, Yuan Lou, Jianhong Wu

• Chris Cosner, Steve Cantrell, Yuan Lou, Jianhong Wu

Support:

- NSERC
- Canada Research Chairs Program
- Fields Institute
- Mitacs and Mprime Centre for Disease Modeling