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Introduction

What is the impact of a species’ movement on invasion, coexistence and
exclusion in a habitat that is spatially variable but temporally constant?

We consider two types of movement:

Unconditional dispersal - independent of habitat quality and
population density

Conditional dispersal - depends on one or both of the above factors
(and others)

Reaction-diffusion-(advection) model

Quantify movement phenotype via flux: diffusive and advective
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Generalized two species model

(Cantrell et al. 2010)

ut = µ∇ · [∇u − u∇P(x)] + u[m(x)− u − v ] in Ω× (0,∞),

vt = ν∇ · [∇v − v∇Q(x)] + v [m(x)− u − v ] in Ω× (0,∞), (1)

[∇u − u∇P] · n = [∇v − v∇Q] · n = 0 on ∂Ω× (0,∞)

Species have same population dynamics but different movement
strategies

m(x) > 0 is nonconstant (spatially inhomogeneous)

Semi-trivial steady states: (u∗, 0) and (0, v∗)

Is there a strategy P(x) which cannot be invaded?
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Single species distribution

Diffusion creates a mismatch between population density at steady
state and habitat quality m(x) (Cantrell et al. 2010)

µ∇ · [∇u − u∇P(x)] + u[m(x)− u] = 0 in Ω,

[∇u − u∇P(x)] · n = 0 on ∂Ω.

If P(x) = lnm(x), u ≡ m is a positive steady state.

No net movement:

∇u − u∇P(x) = ∇m −m∇ lnm = ∇m −∇m = 0

Fitness equilibrated throughout the habitat: m
u ≡ 1.

We call P = lnm an Ideal Free Strategy (IFS).
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Habitat Selection Theory (Fretwell and Lucas 1970):

1 Choose most suitable habitat (ideal)

2 Can move into any desired region (free)

Ideal Free Distribution: A species will aggregate in a location
proportionately to the amount of available resources in that location
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Evolutionary stable strategy

Cantrell et al. showed that P = lnm is a local evolutionary stable
strategy (ESS) and no other strategy can be a local ESS.

Theorem 1

(Averill et al.) Suppose that P = lnm and Q − lnm is nonconstant. Then
(0, v∗) is unstable and (u∗, 0) is globally asymptotically stable.

Biologically, P = lnm is a global ESS.

Main Question: Does this result still hold when u(m − u − v) is
replaced by u2(m − u − v) in model (1)?
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Modified Model

ut = µ∇ · [∇u − u∇ ln(m)] + u2(m − u − v) in Ω× (0,∞),

vt = ν∇ · [∇v − βv∇ ln(m)] + v(m − u − v) in Ω× (0,∞), (2)

[∇u − u∇ ln(m)] · n = [∇v − βv∇ ln(m)] · n = 0 on ∂Ω× (0,∞).

Why is this interesting?

u is subject to weak Allee effect (species no longer have the same
population dynamics)

Interplay between IFS and weak Allee effect

Invasion dynamics not useful for any β ∈ [0,∞)
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β = 0 case

Theorem 2

Suppose m ∈ C 2(Ω̄) is positive and non-constant. Then for β = 0 and any
µ, ν > 0, any solution (u, v) of (2) with nonnegative, not identically zero
initial data converges to (m, 0) in L∞(Ω) as t →∞.

u cannot only invade v , but it drives v to extinction no matter its
diffusion rate

IFS offsets the weak Allee effect
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Proof of Theorem 2

System (2) has two semi-trivial steady states: (m, 0) and (0, v∗)

ut = µ∇ · [∇u − u∇ ln(m)] + u2(m − u) in Ω× (0,∞)

[∇u − u∇ ln(m)] · n = 0 on ∂Ω× (0,∞)

Use Lyapunov approach with E : C (Ω̄)→ R where E (u) =
∫

Ω u + m2

u
to show u∗ = m is unique positive steady state.

Note: d
dtE (u(·, t)) = −

∫
Ω
µ2m|∇(u/m)|2

(u/m)3 −
∫

Ω(m2 − u2)(m − u) ≤ 0.

No positive coexistence states
Use functional E (u, v) =

∫
Ω

m2

u + 2m ln u − u + v2

2 . If (ū, v̄) existed,

then dE
dt (ū, v̄) = 0 which leads to a contradiction.

dE
dt =

−µ
∫

Ω
2m|∇(u/m)|2(1−(u/m))

(u/m)3 −ν
∫

Ω |∇v |
2−
∫

Ω((m−u)2−v2)(m−u−v).
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Ω(m2 − u2)(m − u) ≤ 0.

No positive coexistence states
Use functional E (u, v) =

∫
Ω

m2

u + 2m ln u − u + v2

2 . If (ū, v̄) existed,

then dE
dt (ū, v̄) = 0 which leads to a contradiction.

dE
dt =

−µ
∫

Ω
2m|∇(u/m)|2(1−(u/m))

(u/m)3 −ν
∫

Ω |∇v |
2−
∫

Ω((m−u)2−v2)(m−u−v).
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Proof of Theorem 2

(0, v∗) is unstable
Suppose its stable, then we consider

d

dt

∫
Ω

m2

u
=−

∫
Ω

2µm|∇(u/m)|2

(u/m)3
−
∫

Ω
m2(m − u − v)

≤ −
∫

Ω
(v∗)2(m − v∗) + ε

So d
dt

∫
Ω

m2

u ≤ −η/2 < 0 for all t > 0. Therefore∫
Ω

m2

u ≤
(∫

Ω
m2

u(x ,0)

)
− (η/2)t.

Monotone dynamical system theory to conclude (m, 0) is globally
asymptotically stable.
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β � 1 case

Theorem 3

Suppose m ∈ C 2(Ω̄) is positive and non-constant. Then there exists
0 < β∗ < 1 such that for all β ∈ (0, β∗) and any µ, ν > 0, any solution
(u, v) of (2) with nonnegative, not identically zero initial data converges
to (m, 0) in L∞(Ω) as t →∞.

Again, u is sole winner as IFS is able to still offset the Allee effect.

Proof for Theorem 3 is similar to proof of Theorem 2 but more
technical. Eliminating the possibility of positive coexistence states is
most difficult part.
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Remarks

We conjecture that Theorem 2 holds for all β ∈ (0, 1).

First, (0, v∗) is unstable for β ∈ (0, 1). Second, numerics indicate
that there are no positive steady states.

For the β = 1 case, both species are playing IFS and hence can
coexist. System (2) has a continuum of positive steady states of the
form (sm, (1− s)m) for s ∈ (0, 1).

For the β >> 1 case, we can show that (0, v∗) is unstable.

We conjecture that u (IFS) should be the sole winner as in Theorem
2.
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Intermediate β > 1 case

Numerics indicate:

There exists β̄ such that for β ∈ (1, β̄], (0, v∗) is globally
asymptotically stable (seems to hold for general m, monotone and
non-monotone)

There exists β̂ such the for β ∈ (β̄, β̂) there exists a positive
coexistence state.

Fundamentally different:

Theorem 1 no longer holds, i.e. the winning strategy is no longer a
“resource matching” strategy.

Biological explanation and mathematical justification?
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Intermediate β > 1 case

Numerical example:
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Figure: m(x) = 3e−50(x−.2)2

+ 1.7e−40(x−.8)2

+ .2 (black) and u (red) and v
(blue), µ = 1000, ν = 1000, β = 1.7 a) two species at T = 1.5, b) T = 105.

The growth rate for u near x = 0.8 is m(x)− v(x , t) > 0 for all t > T0.

For β in this range, v can defeat u even when u has significant initial
numbers.
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Summary

For β ∈ [0, β∗) (and we think in [β∗, 1) and in [β∗∗,∞)), the ideal
free disperser dominates.

For β = 1, coexistence as both species are ideal free dispersers

For intermediate β > 1, the ideal free strategy is no longer is optimal
as it can be invaded.

Daniel S. Munther The ideal free strategy with weak Allee effect 15/ 17



Summary

For β ∈ [0, β∗) (and we think in [β∗, 1) and in [β∗∗,∞)), the ideal
free disperser dominates.

For β = 1, coexistence as both species are ideal free dispersers

For intermediate β > 1, the ideal free strategy is no longer is optimal
as it can be invaded.

Daniel S. Munther The ideal free strategy with weak Allee effect 15/ 17



Summary

For β ∈ [0, β∗) (and we think in [β∗, 1) and in [β∗∗,∞)), the ideal
free disperser dominates.

For β = 1, coexistence as both species are ideal free dispersers

For intermediate β > 1, the ideal free strategy is no longer is optimal
as it can be invaded.

Daniel S. Munther The ideal free strategy with weak Allee effect 15/ 17



Summary

For β ∈ [0, β∗) (and we think in [β∗, 1) and in [β∗∗,∞)), the ideal
free disperser dominates.

For β = 1, coexistence as both species are ideal free dispersers

For intermediate β > 1, the ideal free strategy is no longer is optimal
as it can be invaded.

Daniel S. Munther The ideal free strategy with weak Allee effect 15/ 17



References

R.S. Cantrell, C. Cosner, and Y. Lou, Evolution of dispersal and ideal
free distribution, Math Bios. Eng., Vol 7 (2010) 17-36.

I. Averill, Y. Lou, and D. Munther, On several conjectures from
evolution of dispersal, J. Biol. Dynamics, 6 (2012) 117-130.

D. Munther, The ideal free strategy with weak Allee effect, J.
Differential Equations, (2013) in press.

Daniel S. Munther The ideal free strategy with weak Allee effect 16/ 17



Acknowledgement

Chris Cosner, Steve Cantrell, Yuan Lou, Jianhong Wu

Support:

NSERC

Canada Research Chairs Program

Fields Institute

Mitacs and Mprime Centre for Disease Modeling

Daniel S. Munther The ideal free strategy with weak Allee effect 17/ 17



Acknowledgement

Chris Cosner, Steve Cantrell, Yuan Lou, Jianhong Wu

Support:

NSERC

Canada Research Chairs Program

Fields Institute

Mitacs and Mprime Centre for Disease Modeling

Daniel S. Munther The ideal free strategy with weak Allee effect 17/ 17



Acknowledgement

Chris Cosner, Steve Cantrell, Yuan Lou, Jianhong Wu

Support:

NSERC

Canada Research Chairs Program

Fields Institute

Mitacs and Mprime Centre for Disease Modeling

Daniel S. Munther The ideal free strategy with weak Allee effect 17/ 17


