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Producers and Scroungers

→ Two species rely on the same resource (e.g., plants, prey)

→ Only one species can uncover (or discover) the resource

→ Producers discover the resource

→ An intimate knowledge of resource distribution (heads down)

→ Retain a portion of what they discover for themselves

→ Scroungers rely on producers to discover the resource

→ Monitor the success of nearby producers (heads up)

→ “Share” in all discoveries

→ Scramble kleptoparasitism (Giraldeau and Caraco 2000)

→ A small number of scroungers can do well (many producers)

→ Many scroungers may do poorly (few producers)
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Logistic population growth

Let x(t) be the size of a population at time t. Assume

ẋ = (m− d− ax)x, x(0) > 0

→ m is the birth rate (related to resource acquisition)

→ d is the intrinsic death rate

→ ax represents excess mortality (density-dependent effects)

→ if m < d then x(t)→ 0 as t→∞ (population becomes extinct)

→ if m > d then x(t)→ k as t→∞ (population persists)

→ k = m−d
a (carrying capacity)
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Producer population growth

Let p(t) be the size of a producer population at time t. Assume

ṗ =
[
φ(s)m− d− ap

]
p

→ logistic growth but with m→ φ(s)m

→ φ(s) is the proportion of resources kept by a producer when there
are s scroungers (the producer’s share)

→ φ(s) strictly decreasing with φ(0) = 1 and φ(s)→ 0 as s→∞

→ φ(s) =
c

s+ c
(c is the producer’s monopolization factor)

→ p(t)→ 0 or p(t)→ φ(s)m−d
a (when s is fixed)

→ What if s depends on p in some way?
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ṗ =
[
φ(s)m− d− ap

]
p

→ logistic growth but with m→ φ(s)m

→ φ(s) is the proportion of resources kept by a producer when there
are s scroungers (the producer’s share)

→ φ(s) strictly decreasing with φ(0) = 1 and φ(s)→ 0 as s→∞

→ φ(s) =
c

s+ c
(c is the producer’s monopolization factor)

→ p(t)→ 0 or p(t)→ φ(s)m−d
a (when s is fixed)

→ What if s depends on p in some way?



Scrounger population growth

Let s(t) be the size of the scrounger population at time t. Assume

ṡ =
[
ψ(s)mp− e− bs

]
s

→ logistic growth but with m→ ψ(s)mp

→ mp is the corporate rate at which producers discover resources

→ ψ(s) is the proportion of those resources stolen by each scrounger

→ ψ(s) is also the proportion of resources stolen from each producer
by each scrounger (the scrounger’s share)

→ φ(s) + sψ(s) = 1 ∀s (no resource is wasted)

→ φ(s) =
c
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=⇒ ψ(s) =

1
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Producer-scrounger model

Assume
ṗ =

[
φ(s)m− d− ap

]
p, p(0) > 0

ṡ =
[
ψ(s)mp− e− bs

]
s, s(0) > 0

with

φ(s) =
c

s+ c
and ψ(s) =

1

s+ c

→ c→∞ : producers keep everything

→ c > 1 : producer’s share is larger (lions vs hyenas)

→ c < 1 : scrounger’s share is larger (cheetahs vs lions)

→ c→ 0 : scroungers steal everything

→ What is the behavior of the dynamical system?
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ṡ =
[
ψ(s)mp− e− bs

]
s, s(0) > 0

with

φ(s) =
c

s+ c
and ψ(s) =

1

s+ c

→ c→∞ : producers keep everything

→ c > 1 : producer’s share is larger (lions vs hyenas)

→ c < 1 : scrounger’s share is larger (cheetahs vs lions)

→ c→ 0 : scroungers steal everything

→ What is the behavior of the dynamical system?



Producer-scrounger model

Assume
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ṗ =

[
φ(s)m− d− ap

]
p, p(0) > 0
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Equilibrium states

[
φ(s∗)m− d− ap∗

]
p∗ = 0[

ψ(s∗)mp∗ − e− bs∗
]
s∗ = 0

→ E0 = (0, 0) (neither species)

→ E1 = (p+, 0) (producer only)

I p+ = k = m−d
a (producer carrying capacity)

→ E2 = (p∗, s∗) (coexistence)

× E3 = (0, s+) (scrounger only)
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→ If k < 0 then

I E0 is globally asymptotically stable (comparison)

→ If k > 0 and mk < ce then
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I E1 exists
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→ If mk > ce then

I E1 is unstable

I E2 exists

I E2 is globally asymptotically stable (Lyapunov function)
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Role of resource (m) and monopolization (c)
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p+ does not depend on c (right)

p∗ is an increasing function of c

s∗ has a maximum at c = c∗
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Producer-scrounger model (spatial)

Let p(x, t) and s(x, t) denote the producer and scrounger population
densities at location x ∈ Ω and time t ≥ 0

Assume random movement in a closed habitat

∂p

∂t
= d1∆p+

[
φ(s)m(x)− d− ap

]
p, x ∈ Ω

∂s

∂t
= d2∆s+

[
ψ(s)m(x)p− e− bs

]
s, x ∈ Ω

→ m(x): producer resource discovery rate (spatial profile)

→ d1 and d2: mobilities

→ no-flux boundary conditions (∂νp = ∂νs = 0 on ∂Ω)

→ how do the resource m(x) and movement (d1, d2) combine to
influence the ecological outcome?
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Steady-states

A steady-state (p∗, s∗) satisfies

d1∆p∗ +
[
φ(s∗)m(x)− d− ap∗

]
p∗ = 0, x ∈ Ω

d2∆s∗ +
[
ψ(s∗)m(x)p∗ − e− bs∗

]
s∗ = 0, x ∈ Ω

with no-flux boundary conditions

∂νp
∗ = ∂νs

∗ = 0, x ∈ ∂Ω

and is non-negative everywhere

p∗(x) ≥ 0 and s∗(x) ≥ 0, x ∈ Ω

→ E0 = (0, 0) (neither species)

→ E1 = (p+(x), 0) (producer only)

→ E2 = (p∗(x), s∗(x)) (coexistence)
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Profiles of E1 and E2



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω. Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]
U = {u ∈W 1,2(Ω) :

∫
Ω u

2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω.

Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]
U = {u ∈W 1,2(Ω) :

∫
Ω u

2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω. Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]

U = {u ∈W 1,2(Ω) :
∫

Ω u
2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω. Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]
U = {u ∈W 1,2(Ω) :

∫
Ω u

2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω. Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]
U = {u ∈W 1,2(Ω) :

∫
Ω u

2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω. Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]
U = {u ∈W 1,2(Ω) :

∫
Ω u

2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω. Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]
U = {u ∈W 1,2(Ω) :

∫
Ω u

2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω. Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]
U = {u ∈W 1,2(Ω) :

∫
Ω u

2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E0 = (0, 0)

E0 always exists

Linearization of the PDE around E0 leads to an eigenvalue problem

d1∆u+ r(x)u = λu, x ∈ Ω

where r(x) = m(x)− d and ∂νu = 0 on ∂Ω. Define

λ∗ = sup
u∈U

∫
Ω

[
− d1|∇u|2 + ru2

]
U = {u ∈W 1,2(Ω) :

∫
Ω u

2 = 1 and ∂νu = 0 on ∂Ω}

E0 is stable when λ∗ < 0 and it is unstable when λ∗ > 0

E0 is globally asymptotically stable when λ∗ < 0 (comparison)

If r̂ < 0 then E0 is stable for all d1 > 0

If r̄ < 0 < r̂ then E0 is stable only when d1 > d∗1

If r̄ > 0 then E0 is unstable for all d1 > 0



Properties of E1 = (p+(x), 0)

d1∆p+ +
[
m(x)− d− ap+

]
p+ = 0 (x ∈ Ω) with ∂νp

+ = 0 (x ∈ ∂Ω)

E1 exists if and only if E0 is unstable (λ∗ > 0)

Linearization of the PDE around E1 results in the eigenvalue problem

d2∆u+K(x)u = λu, x ∈ Ω

where K(x) = ψ(0)m(x)p+(x)− e and ∂νu = 0 on ∂Ω. Define

µ∗ = sup
u∈U

∫
Ω

[
− d2|∇u|2 +K(x)u2

]
E1 is stable when µ∗ < 0 and it is unstable when µ∗ > 0

E1 is globally asymptotically stable when µ∗ < 0 (comparison)

If K̂ < 0 then E1 is stable for all d2 > 0

If K̄ < 0 < K̂ then E1 is stable only when d2 > d∗2

If K̄ > 0 then E1 is unstable for all d2 > 0
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Properties of E2 = (p∗(x), s∗(x))

If λ∗ < 0 then E0 is G.A.S. (neither species)

If λ∗ > 0 and µ∗ < 0 then E1 is G.A.S. (producer persists)

If λ∗ > 0 and µ∗ > 0 then the PDE is permanent

Permanence implies that E2 exists (Cantrell-Cosner-Hutson 1993)

Uniqueness of E2 is a hard problem

Linearization of the PDE around E2 results in an eigenvalue problem
which consists of two equations. A principal eigenvalue (σ∗) still exists,
but it cannot be expressed in variational form.

E2 is stable when σ∗ < 0 and it is unstable when σ∗ > 0.
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Slower dispersal is favored

Suppose d1 and d2 are replaced by d1/` and d2/`

The horizontal axis is `

The vertical axis is the L∞(Ω)-norm of the steady-states E1 and E2



Conditional movement

Allow producers and scroungers to move in response to the resource
and/or population densities

∂p

∂t
= ∇ ·

[
d1∇p− β1p∇f

]
+
[
φ(s)m− d− ap

]
p, x ∈ Ω

∂s

∂t
= ∇ ·

[
d2∇s− β2s∇g

]
+
[
ψ(s)mp− e− bs

]
s, x ∈ Ω

No-flux boundary conditions

∂ν
[
d1∇p− β1p∇f

]
= ∂ν

[
d2∇s− β2s∇g

]
= 0, x ∈ ∂Ω

→ β1, β2 constants (sign affects interpretation)

→ f = f(m, p, s) and g = g(m, p, s)
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Strategies (f and g)

∂p

∂t
= ∇ ·

[
d1∇p− β1p∇f

]
+
[
φ(s)m− d− ap

]
p, x ∈ Ω

∂s

∂t
= ∇ ·

[
d2∇s− β2s∇g

]
+
[
ψ(s)mp− e− bs

]
s, x ∈ Ω

0 random diffuser
m or lnm resource
p or ln p producer density
s or ln s scrounger density

φ(s) or ψ(s) producer or scrounger share
φ(s)m producer resource acquisition rate
mp corporate resource discovery rate

ψ(s)mp scrounger resource acquisition rate
φ(s)m− d− ap producer fitness
ψ(s)mp− e− bs scrounger fitness



Ecological conclusions and future work

→ An intermediate amount of theft is most favored (for scroungers)

→ The rate of movement does not always matter

→ When movement matters, slower dispersal is always favored

→ Producer group defense (with Z. Shuai)

→ Patch model (with Z. Shuai)

→ Directed movement strategies largely unexplored

Happy Birthday Chris!
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