Resource Theft and Spatial Population Dynamics

Andrew Nevai

University of Central Florida Department of Mathematics

(with Chris Cosner, Miami)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Resource theft (I)

Lion chases prey ... lion catches prey

(日)

Resource theft (I)

Lion chases prey ... lion catches prey

Lion fends off hyenas ... hyena steals some food

Resource theft (II)

Cheetah chases prey ... cheetah catches prey

Resource theft (II)

Cheetah chases prey ... cheetah catches prey

Lion chases cheetah off \ldots lion steals entire catch

Resource theft (III)

 \rightarrow Two species rely on the same resource (e.g., plants, prey)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

- $\rightarrow\,$ Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource

- $\rightarrow\,$ Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource
- $\rightarrow~\mbox{Producers}$ discover the resource
- \rightarrow An intimate knowledge of resource distribution (heads down)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $\rightarrow\,$ Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource
- $\rightarrow~\mbox{Producers}$ discover the resource
- \rightarrow An intimate knowledge of resource distribution (heads down)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\rightarrow\,$ Retain a portion of what they discover for themselves

- $\rightarrow\,$ Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource
- $\rightarrow~\mathsf{Producers}$ discover the resource
- \rightarrow An intimate knowledge of resource distribution (heads down)

- $\rightarrow\,$ Retain a portion of what they discover for themselves
- \rightarrow Scroungers rely on producers to discover the resource

- $\rightarrow\,$ Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource
- $\rightarrow~\mathsf{Producers}$ discover the resource
- \rightarrow An intimate knowledge of resource distribution (heads down)

- $\rightarrow\,$ Retain a portion of what they discover for themselves
- \rightarrow Scroungers rely on producers to discover the resource
- $\rightarrow\,$ Monitor the success of nearby producers (heads up)

- \rightarrow Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource
- $\rightarrow~\mathsf{Producers}$ discover the resource
- \rightarrow An intimate knowledge of resource distribution (heads down)

- $\rightarrow\,$ Retain a portion of what they discover for themselves
- $\rightarrow~\text{Scroungers}$ rely on producers to discover the resource
- $\rightarrow\,$ Monitor the success of nearby producers (heads up)
- \rightarrow "Share" in all discoveries

- \rightarrow Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource
- $\rightarrow~\mbox{Producers}$ discover the resource
- \rightarrow An intimate knowledge of resource distribution (heads down)
- $\rightarrow\,$ Retain a portion of what they discover for themselves
- \rightarrow Scroungers rely on producers to discover the resource
- $\rightarrow\,$ Monitor the success of nearby producers (heads up)
- \rightarrow "Share" in all discoveries
- \rightarrow Scramble kleptoparasitism (Giraldeau and Caraco 2000)

- \rightarrow Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource
- $\rightarrow~\mbox{Producers}$ discover the resource
- \rightarrow An intimate knowledge of resource distribution (heads down)
- $\rightarrow\,$ Retain a portion of what they discover for themselves
- \rightarrow Scroungers rely on producers to discover the resource
- $\rightarrow\,$ Monitor the success of nearby producers (heads up)
- $\rightarrow~$ "Share" in all discoveries
- \rightarrow Scramble kleptoparasitism (Giraldeau and Caraco 2000)
- \rightarrow A small number of scroungers can do well (many producers)

- \rightarrow Two species rely on the same resource (e.g., plants, prey)
- $\rightarrow\,$ Only one species can uncover (or discover) the resource
- $\rightarrow~\mbox{Producers}$ discover the resource
- \rightarrow An intimate knowledge of resource distribution (heads down)
- $\rightarrow\,$ Retain a portion of what they discover for themselves
- $\rightarrow~\text{Scroungers}$ rely on producers to discover the resource
- $\rightarrow\,$ Monitor the success of nearby producers (heads up)
- \rightarrow "Share" in all discoveries
- \rightarrow Scramble kleptoparasitism (Giraldeau and Caraco 2000)
- \rightarrow A small number of scroungers can do well (many producers)

(ロ) (同) (目) (日) (日) (0) (0)

 $\rightarrow\,$ Many scroungers may do poorly (few producers)

Logistic population growth

Let x(t) be the size of a population at time t. Assume

 $\dot{x} = (m - d - ax)x, \quad x(0) > 0$

<ロト < 団 ト < 臣 ト < 臣 ト 三 の Q (</p>

Logistic population growth

Let x(t) be the size of a population at time t. Assume

$$\dot{x} = (m - d - ax)x, \quad x(0) > 0$$

<□> < @> < @> < @> < @> < @> < @</p>

 $\rightarrow m$ is the birth rate (related to resource acquisition)

Logistic population growth

Let x(t) be the size of a population at time t. Assume

 $\dot{x} = (m - d - ax)x, \quad x(0) > 0$

<ロト < @ ト < 差 ト < 差 ト 差 のQ(</p>

 $\rightarrow m$ is the birth rate (related to resource acquisition)

 $ightarrow \, d$ is the intrinsic death rate

 $\dot{x} = (m - d - ax)x, \quad x(0) > 0$

- $\rightarrow m$ is the birth rate (related to resource acquisition)
- $\rightarrow~d$ is the intrinsic death rate
- $\rightarrow ax$ represents excess mortality (density-dependent effects)

 $\dot{x} = (m - d - ax)x, \quad x(0) > 0$

- $\rightarrow m$ is the birth rate (related to resource acquisition)
- $\rightarrow~d$ is the intrinsic death rate
- $\rightarrow ax$ represents excess mortality (density-dependent effects)
- \rightarrow if m < d then $x(t) \rightarrow 0$ as $t \rightarrow \infty$ (population becomes extinct)

 $\dot{x} = (m - d - ax)x, \quad x(0) > 0$

- $\rightarrow m$ is the birth rate (related to resource acquisition)
- $\rightarrow~d$ is the intrinsic death rate
- $\rightarrow ax$ represents excess mortality (density-dependent effects)
- \rightarrow if m < d then $x(t) \rightarrow 0$ as $t \rightarrow \infty$ (population becomes extinct)

 $\rightarrow \mbox{ if } m > d \mbox{ then } x(t) \rightarrow k \mbox{ as } t \rightarrow \infty \mbox{ (population persists)}$

$$\dot{x} = (m - d - ax)x, \quad x(0) > 0$$

- $\rightarrow m$ is the birth rate (related to resource acquisition)
- $\rightarrow~d$ is the intrinsic death rate
- $\rightarrow ax$ represents excess mortality (density-dependent effects)
- $\rightarrow \mbox{ if } m < d \mbox{ then } x(t) \rightarrow 0 \mbox{ as } t \rightarrow \infty$ (population becomes extinct)

 $\rightarrow \mbox{ if } m > d \mbox{ then } x(t) \rightarrow k \mbox{ as } t \rightarrow \infty \mbox{ (population persists)}$

$$ightarrow \, k = rac{m-d}{a}$$
 (carrying capacity)

Let p(t) be the size of a producer population at time t. Assume

$$\dot{p} = \left[\phi(s)m - d - ap\right]p$$

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < ()</p>

ightarrow logistic growth but with $m
ightarrow \phi(s)m$

Let p(t) be the size of a producer population at time t. Assume

$$\dot{p} = \left[\phi(s)m - d - ap\right]p$$

- ightarrow logistic growth but with $m
 ightarrow \phi(s)m$
- $ightarrow \phi(s)$ is the proportion of resources kept by a producer when there are s scroungers (the producer's share)

Let p(t) be the size of a producer population at time t. Assume

$$\dot{p} = \left[\phi(s)m - d - ap\right]p$$

- ightarrow logistic growth but with $m
 ightarrow \phi(s)m$
- $\rightarrow \phi(s)$ is the proportion of resources kept by a producer when there are s scroungers (the producer's share)
- $\rightarrow~\phi(s)$ strictly decreasing with $\phi(0)=1$ and $\phi(s)\rightarrow 0$ as $s\rightarrow\infty$

<□> < @> < @> < @> < @> < @> < @</p>

Let p(t) be the size of a producer population at time t. Assume

$$\dot{p} = \left[\phi(s)m - d - ap\right]p$$

- ightarrow logistic growth but with $m
 ightarrow \phi(s)m$
- $\rightarrow \phi(s)$ is the proportion of resources kept by a producer when there are s scroungers (the producer's share)
- $\rightarrow~\phi(s)$ strictly decreasing with $\phi(0)=1$ and $\phi(s)\rightarrow 0$ as $s\rightarrow\infty$

$$ightarrow \phi(s) = rac{c}{s+c}$$
 (c is the producer's monopolization factor)

Let p(t) be the size of a producer population at time t. Assume

$$\dot{p} = \left[\phi(s)m - d - ap\right]p$$

- ightarrow logistic growth but with $m
 ightarrow \phi(s)m$
- $ightarrow \phi(s)$ is the proportion of resources kept by a producer when there are s scroungers (the producer's share)
- $\rightarrow~\phi(s)$ strictly decreasing with $\phi(0)=1$ and $\phi(s)\rightarrow 0$ as $s\rightarrow\infty$

$$egin{array}{ll}
ightarrow \phi(s)=rac{c}{s+c} & (c ext{ is the producer's monopolization factor} \
ightarrow p(t)
ightarrow 0 & ext{or} & p(t)
ightarrow rac{\phi(s)m-d}{a} & (ext{when }s ext{ is fixed}) \end{array}$$

Let p(t) be the size of a producer population at time t. Assume

$$\dot{p} = \left[\phi(s)m - d - ap\right]p$$

- ightarrow logistic growth but with $m
 ightarrow \phi(s)m$
- $\to \phi(s)$ is the proportion of resources kept by a producer when there are s scroungers (the producer's share)
- $\rightarrow~\phi(s)$ strictly decreasing with $\phi(0)=1$ and $\phi(s)\rightarrow 0$ as $s\rightarrow\infty$

$$\rightarrow \phi(s) = \frac{c}{s+c}$$
 (c is the producer's monopolization factor
 $\rightarrow p(t) \rightarrow 0$ or $p(t) \rightarrow \frac{\phi(s)m-d}{a}$ (when s is fixed)

 \rightarrow What if *s* depends on *p* in some way?

Scrounger population growth

Let s(t) be the size of the scrounger population at time t. Assume

$$\dot{s} = [\psi(s)mp - e - bs]s$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < (

ightarrow logistic growth but with $m
ightarrow \psi(s)mp$

Scrounger population growth

Let s(t) be the size of the scrounger population at time t. Assume

 $\dot{s} = \left[\psi(s)mp - e - bs\right]s$

ightarrow logistic growth but with $m
ightarrow \psi(s)mp$

ightarrow mp is the corporate rate at which producers discover resources

<□> < @> < @> < @> < @> < @> < @</p>

 $\dot{s} = \left[\psi(s)mp - e - bs\right]s$

- ightarrow logistic growth but with $m
 ightarrow \psi(s)mp$
- $ightarrow \, mp$ is the corporate rate at which producers discover resources
- $ightarrow \psi(s)$ is the proportion of those resources stolen by each scrounger

 $\dot{s} = \left[\psi(s)mp - e - bs\right]s$

- ightarrow logistic growth but with $m
 ightarrow \psi(s)mp$
- $ightarrow \, mp$ is the corporate rate at which producers discover resources
- $ightarrow \psi(s)$ is the proportion of those resources stolen by each scrounger
- $ightarrow \psi(s)$ is also the proportion of resources stolen from each producer by each scrounger (the scrounger's share)

 $\dot{s} = \left[\psi(s)mp - e - bs\right]s$

- ightarrow logistic growth but with $m
 ightarrow \psi(s)mp$
- $ightarrow \, mp$ is the corporate rate at which producers discover resources
- $ightarrow \psi(s)$ is the proportion of those resources stolen by each scrounger
- $\to \psi(s)$ is also the proportion of resources stolen from each producer by each scrounger (the scrounger's share)

<ロト < @ ト < 差 ト < 差 ト 差 のQ(</p>

 $ightarrow \phi(s) + s \psi(s) = 1 \quad orall s \,\,$ (no resource is wasted)

 $\dot{s} = \left[\psi(s)mp - e - bs\right]s$

- ightarrow logistic growth but with $m
 ightarrow \psi(s)mp$
- $ightarrow \, mp$ is the corporate rate at which producers discover resources
- $ightarrow \psi(s)$ is the proportion of those resources stolen by each scrounger
- $ightarrow \psi(s)$ is also the proportion of resources stolen from each producer by each scrounger (the scrounger's share)

<ロト < @ ト < 差 ト < 差 ト 差 のQ(</p>

 $ightarrow \phi(s) + s \psi(s) = 1 \quad orall s \,\,$ (no resource is wasted)

$$ightarrow \phi(s) = rac{c}{s+c} \implies \psi(s) = rac{1}{s+c}$$

Producer-scrounger model

Assume

$$\dot{p} = \begin{bmatrix} \phi(s)m - d - ap \end{bmatrix} p, \quad p(0) > 0$$

$$\dot{s} = \begin{bmatrix} \psi(s)mp - e - bs \end{bmatrix} s, \quad s(0) > 0$$

<□> < @> < @> < @> < @> < @> < @</p>
Assume

$$\dot{p} = \begin{bmatrix} \phi(s)m - d - ap \end{bmatrix} p, \quad p(0) > 0$$
$$\dot{s} = \begin{bmatrix} \psi(s)mp - e - bs \end{bmatrix} s, \quad s(0) > 0$$

with

$$\phi(s) = rac{c}{s+c}$$
 and $\psi(s) = rac{1}{s+c}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ → 三 → つへ(

Assume

$$\dot{p} = \begin{bmatrix} \phi(s)m - d - ap \end{bmatrix} p, \quad p(0) > 0$$

$$\dot{s} = \begin{bmatrix} \psi(s)mp - e - bs \end{bmatrix} s, \quad s(0) > 0$$

with

$$\phi(s) = \frac{c}{s+c} \quad \text{and} \quad \psi(s) = \frac{1}{s+c}$$

$$ightarrow c
ightarrow\infty$$
 : producers keep everything

Assume

$$\dot{p} = \begin{bmatrix} \phi(s)m - d - ap \end{bmatrix} p, \quad p(0) > 0$$

$$\dot{s} = \begin{bmatrix} \psi(s)mp - e - bs \end{bmatrix} s, \quad s(0) > 0$$

with

$$\phi(s) = \frac{c}{s+c} \quad \text{and} \quad \psi(s) = \frac{1}{s+c}$$

<□> < @> < @> < @> < @> < @> < @</p>

 $\rightarrow~c\rightarrow\infty$: producers keep everything

 $\rightarrow c > 1$: producer's share is larger (lions vs hyenas)

Assume

$$\dot{p} = \begin{bmatrix} \phi(s)m - d - ap \end{bmatrix} p, \quad p(0) > 0$$

$$\dot{s} = \begin{bmatrix} \psi(s)mp - e - bs \end{bmatrix} s, \quad s(0) > 0$$

with

$$\phi(s) = \frac{c}{s+c} \quad \text{and} \quad \psi(s) = \frac{1}{s+c}$$

$$ightarrow c
ightarrow\infty$$
 : producers keep everything

ightarrow c>1 : producer's share is larger (lions vs hyenas)

 $\rightarrow c < 1$: scrounger's share is larger (cheetahs vs lions)

Assume

$$\dot{p} = \begin{bmatrix} \phi(s)m - d - ap \end{bmatrix} p, \quad p(0) > 0$$

$$\dot{s} = \begin{bmatrix} \psi(s)mp - e - bs \end{bmatrix} s, \quad s(0) > 0$$

with

$$\phi(s) = \frac{c}{s+c} \quad \text{and} \quad \psi(s) = \frac{1}{s+c}$$

$$ightarrow c
ightarrow\infty$$
 : producers keep everything

ightarrow c>1 : producer's share is larger (lions vs hyenas)

 $\rightarrow c < 1$: scrounger's share is larger (cheetahs vs lions)

$$\rightarrow c \rightarrow 0$$
 : scroungers steal everything

Assume

$$\dot{p} = \begin{bmatrix} \phi(s)m - d - ap \end{bmatrix} p, \quad p(0) > 0$$

$$\dot{s} = \begin{bmatrix} \psi(s)mp - e - bs \end{bmatrix} s, \quad s(0) > 0$$

with

$$\phi(s) = \frac{c}{s+c} \quad \text{and} \quad \psi(s) = \frac{1}{s+c}$$

(ロ) (同) (目) (日) (0)

 $\rightarrow~c\rightarrow\infty$: producers keep everything

ightarrow c>1 : producer's share is larger (lions vs hyenas)

 $\rightarrow c < 1$: scrounger's share is larger (cheetahs vs lions)

 $\rightarrow c \rightarrow 0$: scroungers steal everything

 $\rightarrow\,$ What is the behavior of the dynamical system?

$$[\phi(s^*)m - d - ap^*]p^* = 0$$

$$[\psi(s^*)mp^* - e - bs^*]s^* = 0$$

$$[\phi(s^*)m - d - ap^*]p^* = 0$$

$$[\psi(s^*)mp^* - e - bs^*]s^* = 0$$

$$ightarrow E_0 = (0,0)$$
 (neither species)

$$[\phi(s^*)m - d - ap^*]p^* = 0$$
$$[\psi(s^*)mp^* - e - bs^*]s^* = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ → 三 → つへ(

 $\rightarrow E_0 = (0,0) \quad \text{(neither species)}$ $\rightarrow E_1 = (p^+,0) \quad \text{(producer only)}$

$$[\phi(s^*)m - d - ap^*]p^* = 0$$
$$[\psi(s^*)mp^* - e - bs^*]s^* = 0$$

<□> < @> < @> < @> < @> < @> < @</p>

→ $E_0 = (0,0)$ (neither species) → $E_1 = (p^+,0)$ (producer only) • $p^+ = k = \frac{m-d}{a}$ (producer carrying capacity)

$$[\phi(s^*)m - d - ap^*]p^* = 0$$
$$[\psi(s^*)mp^* - e - bs^*]s^* = 0$$

→ $E_0 = (0,0)$ (neither species) → $E_1 = (p^+,0)$ (producer only) • $p^+ = k = \frac{m-d}{a}$ (producer carrying capacity) → $E_2 = (p^*, s^*)$ (coexistence)

$$[\phi(s^*)m - d - ap^*]p^* = 0$$
$$[\psi(s^*)mp^* - e - bs^*]s^* = 0$$

 $\rightarrow E_0 = (0,0) \quad \text{(neither species)}$ $\rightarrow E_1 = (p^+,0) \quad \text{(producer only)}$ $\bullet p^+ = k = \frac{m-d}{a} \quad \text{(producer carrying capacity)}$ $\rightarrow E_2 = (p^*,s^*) \quad \text{(coexistence)}$ $\times E_3 = (0,s^+) \quad \text{(scrounger only)}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ <

 $\rightarrow~{\rm If}~k<0$ then

<□> < @> < @> < @> < @> < @> < @</p>

 $\rightarrow~{\rm If}~k<0$ then

• E_0 is globally asymptotically stable (comparison)

- \rightarrow If k < 0 then
 - E_0 is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~k>0~{\rm and}~mk < ce$ then

- \rightarrow If k < 0 then
 - E_0 is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~k>0~{\rm and}~mk < ce$ then
 - E_0 is unstable

- \rightarrow If k < 0 then
 - E_0 is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~k>0~{\rm and}~mk < ce$ then
 - ► *E*₀ is unstable
 - E_1 exists

- $\rightarrow~{\rm If}~k<0$ then
 - ► *E*⁰ is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~k>0~{\rm and}~mk < ce$ then
 - ► *E*₀ is unstable
 - E_1 exists
 - ► *E*¹ is globally asymptotically stable (comparison)

- $\rightarrow~{\rm If}~k<0$ then
 - ► *E*⁰ is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~k>0~{\rm and}~mk < ce$ then
 - ► *E*₀ is unstable
 - E_1 exists
 - ► *E*¹ is globally asymptotically stable (comparison)

 \rightarrow If mk > ce then

- $\rightarrow~{\rm If}~k<0$ then
 - ► *E*⁰ is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~k>0~{\rm and}~mk < ce$ then
 - ► *E*₀ is unstable
 - E_1 exists
 - E_1 is globally asymptotically stable (comparison)

- \rightarrow If mk > ce then
 - ► *E*₁ is unstable

- $\rightarrow~{\rm If}~k<0$ then
 - ► *E*⁰ is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~k>0~{\rm and}~mk < ce$ then
 - ► *E*₀ is unstable
 - E_1 exists
 - E_1 is globally asymptotically stable (comparison)

- $\rightarrow~{\rm If}~mk>ce~{\rm then}$
 - ► *E*₁ is unstable
 - ► E₂ exists

- \rightarrow If k < 0 then
 - ► *E*⁰ is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~k>0~{\rm and}~mk < ce$ then
 - ► *E*₀ is unstable
 - E_1 exists
 - ▶ *E*¹ is globally asymptotically stable (comparison)
- $\rightarrow~{\rm If}~mk>ce~{\rm then}$
 - ► *E*₁ is unstable
 - ► E₂ exists
 - E_2 is globally asymptotically stable (Lyapunov function)

Role of resource (m) and monopolization (c)

э

 p^+ , p^* , and s^* are increasing functions of m (left)

Role of resource (m) and monopolization (c)

・ロト ・ 日 ト ・ モ ト ・ モ ト

э

 p^+ , p^* , and s^* are increasing functions of m (left)

 p^+ does not depend on c (right)

Role of resource (m) and monopolization (c)

・ロト ・ 日 ト ・ モ ト ・ モ ト

3

 $p^{+}\text{, }p^{*}\text{, and }s^{*}$ are increasing functions of m (left)

 p^+ does not depend on c (right)

 p^{\ast} is an increasing function of c

Role of resource $\left(m\right)$ and monopolization $\left(c\right)$

◆□ > → □ > → 三 > → 三 >

3

 p^+ , p^* , and s^* are increasing functions of m (left)

- p^+ does not depend on c (right)
- p^* is an increasing function of c
- s^* has a maximum at $c = c^*$

Role of resource $\left(m\right)$ and monopolization $\left(c\right)$

◆□ > → □ > → 三 > → 三 >

э

 p^+ , p^* , and s^* are increasing functions of m (left)

- p^+ does not depend on c (right)
- p^* is an increasing function of c
- ${\pmb s}^*$ has a maximum at $c=c^*$

What is the role of space?

Producer-scrounger model (spatial)

Let p(x,t) and s(x,t) denote the producer and scrounger population densities at location $x\in\Omega$ and time $t\geq 0$

Assume random movement in a closed habitat

$$\frac{\partial p}{\partial t} = d_1 \Delta p + \left[\phi(s)m(x) - d - ap\right]p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = d_2 \Delta s + \left[\psi(s)m(x)p - e - bs\right]s, \quad x \in \Omega$$

Assume random movement in a closed habitat

$$\frac{\partial p}{\partial t} = d_1 \Delta p + \left[\phi(s)m(x) - d - ap\right]p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = d_2 \Delta s + \left[\psi(s)m(x)p - e - bs\right]s, \quad x \in \Omega$$

 $\rightarrow m(x)$: producer resource discovery rate (spatial profile)

Assume random movement in a closed habitat

$$\frac{\partial p}{\partial t} = d_1 \Delta p + \left[\phi(s)m(x) - d - ap\right]p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = d_2 \Delta s + \left[\psi(s)m(x)p - e - bs\right]s, \quad x \in \Omega$$

 $\rightarrow m(x)$: producer resource discovery rate (spatial profile)

 \rightarrow d_1 and d_2 : mobilities

Assume random movement in a closed habitat

$$\frac{\partial p}{\partial t} = d_1 \Delta p + \left[\phi(s)m(x) - d - ap\right]p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = d_2 \Delta s + \left[\psi(s)m(x)p - e - bs\right]s, \quad x \in \Omega$$

 $\rightarrow m(x)$: producer resource discovery rate (spatial profile)

- \rightarrow d_1 and d_2 : mobilities
- \rightarrow no-flux boundary conditions ($\partial_{\nu}p = \partial_{\nu}s = 0$ on $\partial\Omega$)

Assume random movement in a closed habitat

$$\frac{\partial p}{\partial t} = d_1 \Delta p + \left[\phi(s)m(x) - d - ap\right]p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = d_2 \Delta s + \left[\psi(s)m(x)p - e - bs\right]s, \quad x \in \Omega$$

 $\rightarrow m(x)$: producer resource discovery rate (spatial profile)

- \rightarrow d_1 and d_2 : mobilities
- \rightarrow no-flux boundary conditions ($\partial_{\nu}p = \partial_{\nu}s = 0$ on $\partial\Omega$)
- \rightarrow how do the resource m(x) and movement (d_1,d_2) combine to influence the ecological outcome?

A steady-state $\left(p^{*},s^{*}\right)$ satisfies

$$d_1 \Delta p^* + [\phi(s^*)m(x) - d - ap^*]p^* = 0, \quad x \in \Omega$$

$$d_2 \Delta s^* + \left[\psi(s^*) m(x) p^* - e - bs^* \right] s^* = 0, \quad x \in \Omega$$

with no-flux boundary conditions

$$\partial_{\nu}p^* = \partial_{\nu}s^* = 0, \quad x \in \partial\Omega$$

and is non-negative everywhere

$$p^*(x) \geq 0 \quad \text{and} \quad s^*(x) \geq 0, \quad x \in \Omega$$

A steady-state $\left(p^{*},s^{*}\right)$ satisfies

$$d_1 \Delta p^* + [\phi(s^*)m(x) - d - ap^*]p^* = 0, \quad x \in \Omega$$

$$d_2 \Delta s^* + \left[\psi(s^*) m(x) p^* - e - bs^* \right] s^* = 0, \quad x \in \Omega$$

with no-flux boundary conditions

$$\partial_{\nu}p^* = \partial_{\nu}s^* = 0, \quad x \in \partial\Omega$$

<□> < @> < @> < @> < @> < @> < @</p>

and is non-negative everywhere

$$p^*(x) \ge 0$$
 and $s^*(x) \ge 0, \quad x \in \Omega$
 $ightarrow E_0 = (0,0)$ (neither species)

A steady-state $\left(p^{*},s^{*}\right)$ satisfies

$$d_1 \Delta p^* + [\phi(s^*)m(x) - d - ap^*]p^* = 0, \quad x \in \Omega$$

$$d_2 \Delta s^* + \left[\psi(s^*) m(x) p^* - e - bs^* \right] s^* = 0, \quad x \in \Omega$$

with no-flux boundary conditions

$$\partial_{\nu}p^* = \partial_{\nu}s^* = 0, \quad x \in \partial\Omega$$

 $x \in \Omega$

<□> < @> < @> < @> < @> < @> < @</p>

and is non-negative everywhere

$$p^*(x) \ge 0$$
 and $s^*(x) \ge 0,$
 $\rightarrow E_0 = (0,0)$ (neither species)
 $\rightarrow E_1 = (p^+(x),0)$ (producer only)
A steady-state $\left(p^{*},s^{*}\right)$ satisfies

$$d_1 \Delta p^* + [\phi(s^*)m(x) - d - ap^*]p^* = 0, \quad x \in \Omega$$

$$d_2 \Delta s^* + \left[\psi(s^*) m(x) p^* - e - b s^* \right] s^* = 0, \quad x \in \Omega$$

with no-flux boundary conditions

$$\partial_{\nu}p^* = \partial_{\nu}s^* = 0, \quad x \in \partial\Omega$$

and is non-negative everywhere

$$p^*(x) \ge 0$$
 and $s^*(x) \ge 0$, $x \in \Omega$
 $\rightarrow E_0 = (0,0)$ (neither species)
 $\rightarrow E_1 = (p^+(x),0)$ (producer only)
 $\rightarrow E_2 = (p^*(x), s^*(x))$ (coexistence)

Properties of $E_0 = (0, 0)$

<□> < @> < @> < @> < @> < @> < @</p>

 E_0 always exists

Linearization of the PDE around E_0 leads to an eigenvalue problem

$$d_1 \Delta u + r(x)u = \lambda u, \quad x \in \Omega$$

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < ()</p>

where r(x) = m(x) - d and $\partial_{\nu} u = 0$ on $\partial \Omega$.

Linearization of the PDE around E_0 leads to an eigenvalue problem

$$d_1\Delta u + r(x)u = \lambda u, \quad x \in \Omega$$

where $r(x) = m(x) - d$ and $\partial_{\nu}u = 0$ on $\partial\Omega$. Define

$$\lambda^* = \sup_{u \in U} \int_{\Omega} \left[-d_1 |\nabla u|^2 + ru^2 \right]$$

Linearization of the PDE around E_0 leads to an eigenvalue problem

$$d_1\Delta u + r(x)u = \lambda u, \quad x \in \Omega$$

where r(x) = m(x) - d and $\partial_{\nu} u = 0$ on $\partial \Omega$. Define

$$\lambda^* = \sup_{u \in U} \int_{\Omega} \left[-d_1 |\nabla u|^2 + ru^2 \right]$$

<□> < @> < @> < @> < @> < @> < @</p>

 $U = \{ u \in W^{1,2}(\overline{\Omega}) : \int_{\Omega} u^2 = 1 \text{ and } \partial_{\nu} u = 0 \text{ on } \partial\Omega \}$

Linearization of the PDE around E_0 leads to an eigenvalue problem

$$d_1 \Delta u + r(x)u = \lambda u, \quad x \in \Omega$$

where r(x) = m(x) - d and $\partial_{\nu} u = 0$ on $\partial \Omega$. Define

$$\lambda^* = \sup_{u \in U} \int_{\Omega} \left[-d_1 |\nabla u|^2 + ru^2 \right]$$

 $U = \{ u \in W^{1,2}(\overline{\Omega}) : \int_{\Omega} u^2 = 1 \text{ and } \partial_{\nu} u = 0 \text{ on } \partial\Omega \}$

 E_0 is stable when $\lambda^* < 0$ and it is unstable when $\lambda^* > 0$

Linearization of the PDE around E_0 leads to an eigenvalue problem

$$d_1 \Delta u + r(x)u = \lambda u, \quad x \in \Omega$$

where r(x) = m(x) - d and $\partial_{\nu} u = 0$ on $\partial \Omega$. Define

$$\lambda^* = \sup_{u \in U} \int_{\Omega} \left[-d_1 |\nabla u|^2 + ru^2 \right]$$

 $U = \{ u \in W^{1,2}(\overline{\Omega}) : \int_{\Omega} u^2 = 1 \text{ and } \partial_{\nu} u = 0 \text{ on } \partial \Omega \}$

 E_0 is stable when $\lambda^* < 0$ and it is unstable when $\lambda^* > 0$

 E_0 is globally asymptotically stable when $\lambda^* < 0$ (comparison)

Linearization of the PDE around E_0 leads to an eigenvalue problem

$$d_1 \Delta u + r(x)u = \lambda u, \quad x \in \Omega$$

where r(x) = m(x) - d and $\partial_{\nu} u = 0$ on $\partial \Omega$. Define

$$\lambda^* = \sup_{u \in U} \int_{\Omega} \left[-d_1 |\nabla u|^2 + ru^2 \right]$$

 $U = \{ u \in W^{1,2}(\overline{\Omega}) : \int_{\Omega} u^2 = 1 \text{ and } \partial_{\nu} u = 0 \text{ on } \partial\Omega \}$

 E_0 is stable when $\lambda^* < 0$ and it is unstable when $\lambda^* > 0$

 E_0 is globally asymptotically stable when $\lambda^* < 0$ (comparison) If $\hat{r} < 0$ then E_0 is stable for all $d_1 > 0$

Linearization of the PDE around E_0 leads to an eigenvalue problem

$$d_1 \Delta u + r(x)u = \lambda u, \quad x \in \Omega$$

where r(x) = m(x) - d and $\partial_{\nu} u = 0$ on $\partial \Omega$. Define

$$\lambda^* = \sup_{u \in U} \int_{\Omega} \left[-d_1 |\nabla u|^2 + ru^2 \right]$$

 $U = \{ u \in W^{1,2}(\overline{\Omega}) : \int_{\Omega} u^2 = 1 \text{ and } \partial_{\nu} u = 0 \text{ on } \partial \Omega \}$

 E_0 is stable when $\lambda^* < 0$ and it is unstable when $\lambda^* > 0$

 E_0 is globally asymptotically stable when $\lambda^* < 0$ (comparison) If $\hat{r} < 0$ then E_0 is stable for all $d_1 > 0$

If $\bar{r} < 0 < \hat{r}$ then E_0 is stable only when $d_1 > d_1^*$

Linearization of the PDE around E_0 leads to an eigenvalue problem

$$d_1 \Delta u + r(x)u = \lambda u, \quad x \in \Omega$$

where r(x) = m(x) - d and $\partial_{\nu} u = 0$ on $\partial \Omega$. Define

$$\lambda^* = \sup_{u \in U} \int_{\Omega} \left[-d_1 |\nabla u|^2 + ru^2 \right]$$

 $U = \{ u \in W^{1,2}(\overline{\Omega}) : \int_{\Omega} u^2 = 1 \text{ and } \partial_{\nu} u = 0 \text{ on } \partial \Omega \}$

 E_0 is stable when $\lambda^* < 0$ and it is unstable when $\lambda^* > 0$

 E_0 is globally asymptotically stable when $\lambda^* < 0$ (comparison) If $\hat{r} < 0$ then E_0 is stable for all $d_1 > 0$ If $\bar{r} < 0 < \hat{r}$ then E_0 is stable only when $d_1 > d_1^*$

<ロト < @ ト < 差 ト < 差 ト 差 のQ(</p>

If $\bar{r} > 0$ then E_0 is unstable for all $d_1 > 0$

 $d_1\Delta p^+ + \left[m(x) - d - ap^+\right]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_\nu p^+ = 0 \ (x \in \partial \Omega)$

 $d_1\Delta p^+ + [m(x) - d - ap^+]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_{\nu} p^+ = 0 \ (x \in \partial \Omega)$ $E_1 \text{ exists if and only if } E_0 \text{ is unstable } (\lambda^* > 0)$

$$\begin{split} &d_1\Delta p^+ + \left[m(x) - d - ap^+\right]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_\nu p^+ = 0 \ (x \in \partial \Omega) \\ &E_1 \text{ exists if and only if } E_0 \text{ is unstable } (\lambda^* > 0) \end{split}$$

Linearization of the PDE around E_1 results in the eigenvalue problem

$$d_2\Delta u + K(x)u = \lambda u, \quad x \in \Omega$$

where $K(x) = \psi(0)m(x)p^+(x) - e$ and $\partial_{\nu}u = 0$ on $\partial\Omega$.

$$\begin{split} &d_1\Delta p^+ + \left[m(x) - d - ap^+\right]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_\nu p^+ = 0 \ (x \in \partial \Omega) \\ &E_1 \text{ exists if and only if } E_0 \text{ is unstable } (\lambda^* > 0) \end{split}$$

Linearization of the PDE around E_1 results in the eigenvalue problem

$$d_2\Delta u + K(x)u = \lambda u, \quad x \in \Omega$$

where $K(x) = \psi(0)m(x)p^+(x) - e$ and $\partial_{\nu}u = 0$ on $\partial\Omega$. Define

$$\mu^* = \sup_{u \in U} \int_{\Omega} \left[-d_2 |\nabla u|^2 + K(x)u^2 \right]$$

$$\begin{split} &d_1\Delta p^+ + \left[m(x) - d - ap^+\right]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_\nu p^+ = 0 \ (x \in \partial \Omega) \\ &E_1 \text{ exists if and only if } E_0 \text{ is unstable } (\lambda^* > 0) \end{split}$$

Linearization of the PDE around E_1 results in the eigenvalue problem

$$d_2\Delta u + K(x)u = \lambda u, \quad x \in \Omega$$

where $K(x) = \psi(0)m(x)p^+(x) - e$ and $\partial_{\nu}u = 0$ on $\partial\Omega$. Define

$$\mu^* = \sup_{u \in U} \int_{\Omega} \left[-d_2 |\nabla u|^2 + K(x)u^2 \right]$$

 E_1 is stable when $\mu^* < 0$ and it is unstable when $\mu^* > 0$

$$\begin{split} &d_1\Delta p^+ + \left[m(x) - d - ap^+\right]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_\nu p^+ = 0 \ (x \in \partial \Omega) \\ &E_1 \text{ exists if and only if } E_0 \text{ is unstable } (\lambda^* > 0) \end{split}$$

Linearization of the PDE around E_1 results in the eigenvalue problem

$$d_2\Delta u + K(x)u = \lambda u, \quad x \in \Omega$$

where $K(x) = \psi(0)m(x)p^+(x) - e$ and $\partial_{\nu}u = 0$ on $\partial\Omega$. Define

$$\mu^* = \sup_{u \in U} \int_{\Omega} \left[-d_2 |\nabla u|^2 + K(x)u^2 \right]$$

 E_1 is stable when $\mu^* < 0$ and it is unstable when $\mu^* > 0$

 E_1 is globally asymptotically stable when $\mu^* < 0$ (comparison)

$$\begin{split} &d_1\Delta p^+ + \left[m(x) - d - ap^+\right]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_\nu p^+ = 0 \ (x \in \partial \Omega) \\ &E_1 \text{ exists if and only if } E_0 \text{ is unstable } (\lambda^* > 0) \end{split}$$

Linearization of the PDE around E_1 results in the eigenvalue problem

$$d_2\Delta u + K(x)u = \lambda u, \quad x \in \Omega$$

where $K(x) = \psi(0)m(x)p^+(x) - e$ and $\partial_{\nu}u = 0$ on $\partial\Omega$. Define

$$\mu^* = \sup_{u \in U} \int_{\Omega} \left[-d_2 |\nabla u|^2 + K(x)u^2 \right]$$

 E_1 is stable when $\mu^* < 0$ and it is unstable when $\mu^* > 0$ E_1 is globally asymptotically stable when $\mu^* < 0$ (comparison) If $\hat{K} < 0$ then E_1 is stable for all $d_2 > 0$

$$\begin{split} &d_1\Delta p^+ + \left[m(x) - d - ap^+\right]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_\nu p^+ = 0 \ (x \in \partial \Omega) \\ &E_1 \text{ exists if and only if } E_0 \text{ is unstable } (\lambda^* > 0) \end{split}$$

Linearization of the PDE around E_1 results in the eigenvalue problem

$$d_2\Delta u + K(x)u = \lambda u, \quad x \in \Omega$$

where $K(x) = \psi(0)m(x)p^+(x) - e$ and $\partial_{\nu}u = 0$ on $\partial\Omega$. Define

$$\mu^* = \sup_{u \in U} \int_{\Omega} \left[-d_2 |\nabla u|^2 + K(x)u^2 \right]$$

 E_1 is stable when $\mu^* < 0$ and it is unstable when $\mu^* > 0$

 E_1 is globally asymptotically stable when $\mu^* < 0$ (comparison) If $\hat{K} < 0$ then E_1 is stable for all $d_2 > 0$ If $\bar{K} < 0 < \hat{K}$ then E_1 is stable only when $d_2 > d_2^*$

$$\begin{split} &d_1\Delta p^+ + \left[m(x) - d - ap^+\right]p^+ = 0 \ (x \in \Omega) \quad \text{with} \quad \partial_\nu p^+ = 0 \ (x \in \partial \Omega) \\ &E_1 \text{ exists if and only if } E_0 \text{ is unstable } (\lambda^* > 0) \end{split}$$

Linearization of the PDE around E_1 results in the eigenvalue problem

$$d_2\Delta u + K(x)u = \lambda u, \quad x \in \Omega$$

where $K(x) = \psi(0)m(x)p^+(x) - e$ and $\partial_{\nu}u = 0$ on $\partial\Omega$. Define

$$\mu^* = \sup_{u \in U} \int_{\Omega} \left[-d_2 |\nabla u|^2 + K(x)u^2 \right]$$

 E_1 is stable when $\mu^* < 0$ and it is unstable when $\mu^* > 0$

 E_1 is globally asymptotically stable when $\mu^* < 0$ (comparison) If $\hat{K} < 0$ then E_1 is stable for all $d_2 > 0$ If $\bar{K} < 0 < \hat{K}$ then E_1 is stable only when $d_2 > d_2^*$ If $\bar{K} > 0$ then E_1 is unstable for all $d_2 > 0$

If $\lambda^* < 0$ then E_0 is G.A.S. (neither species)

If $\lambda^* < 0$ then E_0 is G.A.S. (neither species)

If $\lambda^* > 0$ and $\mu^* < 0$ then E_1 is G.A.S. (producer persists)

<ロト < @ ト < 差 ト < 差 ト 差 のQ(</p>

If $\lambda^* < 0$ then E_0 is G.A.S. (neither species)

If $\lambda^* > 0$ and $\mu^* < 0$ then E_1 is G.A.S. (producer persists)

If $\lambda^*>0$ and $\mu^*>0$ then the PDE is permanent

If $\lambda^* < 0$ then E_0 is G.A.S. (neither species)

If $\lambda^* > 0$ and $\mu^* < 0$ then E_1 is G.A.S. (producer persists)

If $\lambda^*>0$ and $\mu^*>0$ then the PDE is permanent

Permanence implies that E_2 exists (Cantrell-Cosner-Hutson 1993)

If $\lambda^* < 0$ then E_0 is G.A.S. (neither species)

If $\lambda^* > 0$ and $\mu^* < 0$ then E_1 is G.A.S. (producer persists)

If $\lambda^*>0$ and $\mu^*>0$ then the PDE is permanent

Permanence implies that E_2 exists (Cantrell-Cosner-Hutson 1993)

<ロト < @ ト < 差 ト < 差 ト 差 のQ(</p>

Uniqueness of E_2 is a hard problem

If $\lambda^* < 0$ then E_0 is G.A.S. (neither species)

If $\lambda^* > 0$ and $\mu^* < 0$ then E_1 is G.A.S. (producer persists)

If $\lambda^*>0$ and $\mu^*>0$ then the PDE is permanent

Permanence implies that E_2 exists (Cantrell-Cosner-Hutson 1993)

Uniqueness of E_2 is a hard problem

Linearization of the PDE around E_2 results in an eigenvalue problem which consists of two equations. A principal eigenvalue (σ^*) still exists, but it cannot be expressed in variational form.

If $\lambda^* < 0$ then E_0 is G.A.S. (neither species)

If $\lambda^* > 0$ and $\mu^* < 0$ then E_1 is G.A.S. (producer persists)

If $\lambda^*>0$ and $\mu^*>0$ then the PDE is permanent

Permanence implies that E_2 exists (Cantrell-Cosner-Hutson 1993)

Uniqueness of E_2 is a hard problem

Linearization of the PDE around E_2 results in an eigenvalue problem which consists of two equations. A principal eigenvalue (σ^*) still exists, but it cannot be expressed in variational form.

 E_2 is stable when $\sigma^* < 0$ and it is unstable when $\sigma^* > 0$.

If $\lambda^* < 0$ then E_0 is G.A.S. (neither species)

If $\lambda^* > 0$ and $\mu^* < 0$ then E_1 is G.A.S. (producer persists)

If $\lambda^*>0$ and $\mu^*>0$ then the PDE is permanent

Permanence implies that E_2 exists (Cantrell-Cosner-Hutson 1993)

Uniqueness of E_2 is a hard problem

Linearization of the PDE around E_2 results in an eigenvalue problem which consists of two equations. A principal eigenvalue (σ^*) still exists, but it cannot be expressed in variational form.

 E_2 is stable when $\sigma^* < 0$ and it is unstable when $\sigma^* > 0$.

If m(x) is constant then E_2 is unique and globally asymptotically stable

Slower dispersal is favored

Suppose d_1 and d_2 are replaced by d_1/ℓ and d_2/ℓ

The horizontal axis is ℓ

The vertical axis is the $L^{\infty}(\Omega)$ -norm of the steady-states E_1 and E_2

(日本)(同本)(日本)(日本)(日本)

Allow producers and scroungers to move in response to the resource and/or population densities

$$\frac{\partial p}{\partial t} = \nabla \cdot \left[d_1 \nabla p - \beta_1 p \nabla f \right] + \left[\phi(s)m - d - ap \right] p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = \nabla \cdot \left[d_2 \nabla s - \beta_2 s \nabla g \right] + \left[\psi(s)mp - e - bs \right] s, \quad x \in \Omega$$

<□> < @> < @> < @> < @> < @> < @</p>

Allow producers and scroungers to move in response to the resource and/or population densities

$$\frac{\partial p}{\partial t} = \nabla \cdot \left[d_1 \nabla p - \beta_1 p \nabla f \right] + \left[\phi(s)m - d - ap \right] p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = \nabla \cdot \left[d_2 \nabla s - \beta_2 s \nabla g \right] + \left[\psi(s)mp - e - bs \right] s, \quad x \in \Omega$$

No-flux boundary conditions

$$\partial_{\nu} \left[d_1 \nabla p - \beta_1 p \nabla f \right] = \partial_{\nu} \left[d_2 \nabla s - \beta_2 s \nabla g \right] = 0, \quad x \in \partial \Omega$$

<□> < @> < @> < @> < @> < @> < @</p>

Allow producers and scroungers to move in response to the resource and/or population densities

$$\frac{\partial p}{\partial t} = \nabla \cdot \left[d_1 \nabla p - \beta_1 p \nabla f \right] + \left[\phi(s)m - d - ap \right] p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = \nabla \cdot \left[d_2 \nabla s - \beta_2 s \nabla g \right] + \left[\psi(s)mp - e - bs \right] s, \quad x \in \Omega$$

No-flux boundary conditions

$$\partial_{\nu} \left[d_1 \nabla p - \beta_1 p \nabla f \right] = \partial_{\nu} \left[d_2 \nabla s - \beta_2 s \nabla g \right] = 0, \quad x \in \partial \Omega$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < (

 $\rightarrow \beta_1$, β_2 constants (sign affects interpretation)

$$\rightarrow \ f = f(m,p,s) \text{ and } g = g(m,p,s)$$

Strategies (f and g)

$$\frac{\partial p}{\partial t} = \nabla \cdot \left[d_1 \nabla p - \beta_1 p \nabla f \right] + \left[\phi(s)m - d - ap \right] p, \quad x \in \Omega$$
$$\frac{\partial s}{\partial t} = \nabla \cdot \left[d_2 \nabla s - \beta_2 s \nabla g \right] + \left[\psi(s)mp - e - bs \right] s, \quad x \in \Omega$$

0 random diffuser $m \, \operatorname{or} \, \ln m$ resource $p \text{ or } \ln p$ producer density s or $\ln s$ scrounger density $\phi(s)$ or $\psi(s)$ producer or scrounger share $\phi(s)m$ producer resource acquisition rate corporate resource discovery rate mp $\psi(s)mp$ scrounger resource acquisition rate $\phi(s)m - d - ap$ producer fitness $\psi(s)mp - e - bs$ scrounger fitness

Ecological conclusions and future work

 \rightarrow An intermediate amount of theft is most favored (for scroungers)

Ecological conclusions and future work

 \rightarrow An intermediate amount of theft is most favored (for scroungers)

<□> < @> < @> < @> < @> < @> < @</p>

 $\rightarrow~$ The rate of movement does not always matter

Ecological conclusions and future work

 \rightarrow An intermediate amount of theft is most favored (for scroungers)

- $\rightarrow~$ The rate of movement does not always matter
- $\rightarrow\,$ When movement matters, slower dispersal is always favored
\rightarrow An intermediate amount of theft is most favored (for scroungers)

- $\rightarrow~$ The rate of movement does not always matter
- $\rightarrow\,$ When movement matters, slower dispersal is always favored
- \rightarrow Producer group defense (with Z. Shuai)

ightarrow An intermediate amount of theft is most favored (for scroungers)

<□> < @> < @> < @> < @> < @> < @</p>

- $\rightarrow~$ The rate of movement does not always matter
- $\rightarrow\,$ When movement matters, slower dispersal is always favored
- \rightarrow Producer group defense (with Z. Shuai)
- \rightarrow Patch model (with Z. Shuai)

ightarrow An intermediate amount of theft is most favored (for scroungers)

(ロ) (同) (目) (日) (0)

- $\rightarrow~$ The rate of movement does not always matter
- $\rightarrow\,$ When movement matters, slower dispersal is always favored
- \rightarrow Producer group defense (with Z. Shuai)
- \rightarrow Patch model (with Z. Shuai)
- $\rightarrow\,$ Directed movement strategies largely unexplored

- ightarrow An intermediate amount of theft is most favored (for scroungers)
- $\rightarrow~$ The rate of movement does not always matter
- $\rightarrow\,$ When movement matters, slower dispersal is always favored
- \rightarrow Producer group defense (with Z. Shuai)
- \rightarrow Patch model (with Z. Shuai)
- $\rightarrow\,$ Directed movement strategies largely unexplored

Happy Birthday Chris!

(ロ) (同) (目) (日) (0)