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Experiment realised by Frederic Fabre, Josselin Montarry, Vincent Simon and
Benoit Moury (INRA, UR407 Pathologie Végétale)

1.

Host Plant : Pepper (capsicum annuum)

Virus : Potato Virus Y (PVY)–Potyviridae –ARNss(+)

2. 4 PYV Variant (DH, NH, DN, NN) differing only by 1 or 2 substitutions involving
their pathogenicity properties

AA Position in the VPg gene
119 121

NN N N
NH N H
DN D N
DH D H

3. Analysis of the within-host population dynamics of these 4 variants in a
susceptible host
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Experimentation protocol and Data set

Presentation of the experiment and the data

• Protocol : 5 rows of 8 plants inoculated at the same time and 5 sampling date
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The best model which fit the Data is a Lotka-Volterra system with mutation
(Fabre,C et al. 12)

dvi

dt
= ri vi

1−
1
K

(1 +
4∑

j 6=i,j=1

rj

ri
vj )

+
4∑

j=1

µij (vj − vi )

Assumption on the Problems and Questions

1. The reproduction rate is very high for virus and it is admitted that mutation occurs
in small quantity

2. What is the dynamics of

dvi

dt
= vi

ri −
1
K

4∑
j=1

rj vj

+
4∑

j=1

µij (vj − vi )

3. Numerics suggest that the (vi ) converges to a steady states which is independent
of the initial data

4. How to prove that v converges to a unique steady state ?
5. How fast it converge to the equilibria ?
6. How is affected the dynamics for a small perturbation of the competition ?
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Similar question can be address for the Mutation-Selection Model

The mutation-selection model

∂u
∂t

= u
(

r(x)−
∫

Ω
K(x , x ′)u(x ′) dx ′

)
+M[u] in R+ × Ω (1)

u(x , 0) = u0(x) (2)

where Ω ⊂ Rd is bounded,M is a diffusion operator and for each x , K : Ω2 → R is
locally Lipschitz, non negative.

Biological interpretation

• u(x , t) is a density of population structured by a phenotypical trait
• M is a modelling the process of mutation
• (r(x)−Ψ(x , u)) nonlocal Logistic control of the population
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Connection with the Lotka-Volterra Equation with mutation

Nice Observation of Champagnat :

∂u
∂t

= u
(

r(x)−
∫

Ω
k(x , y)u(y) dy

)
+

∫
Ω

m(x , y)(u(y , t)− u(x , t)) dy in R+ × Ω

(3)

u(x , 0) = u0(x) (4)

Plugg v(t) =
∑N

i=1 vi (t)δxi and set ri = r(xi ), kij = k(xi , xj ) and µij = m(xi , xj ) then

dvi

dt
= vi (r(xi )−

N∑
j=1

kij vi ) +
N∑

j=1

µij (vj − vi ) in R+ (5)

vi (0) = v0(xi ) (6)
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Statement

The mutation-selection model

∂u
∂t

= u(r(x)−Ψ(x , u)) +M[u] in R+ × Ω (7)

u(x , 0) = u0(x) (8)

where Ω ⊂ Rd is bounded,M is a diffusion operator, r ≥ 0 and for each x ,
Ψ(x , ·) : Lp(Ω)→ R is locally Lipschitz, monotone increasing, Ψ(x , 0) = 0.

Assumption

∃R > 0, k ≥ 1, c0 > 0 so that ∀x ∈ Ω, ∀ v ∈ {f ∈ Lp(Ω) | f ≥ 0, ‖f‖p > R},

c0

(∫
Ω

f (y) dy
)k
≤ Ψ(x , f ).

Example

• Ψ(x , u) =
∫

ΩK(x , y , u(y)) dy with k ∈ C0,1(Ω2 × R), k(x , y , 0) = 0 for all x , y
and for all s ≥ 0 k(x , y , s) ≥ 0 and is increasing with respect to s.
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Known Results

Pure CompetitionM≡ 0

• For the ODE System
dv
dt

= Rv −Ψ(v)v

Crow (1970), Akin (1979), Hadeler (1981),Hirsch (1982,1985,1988), Hofbauer
(1987), Burger (90,2000), Champagnat (2010), Diekmann (2005), Jabin-Raoul
(2011), Li (1999), Perthame (2007).
• Existence of global solution, steady states , stability, global asymptotic . . ..

• For the PDE Equation :

∂u
∂t

= u(r(x)−Ψ(x , u)) in R+ × Ω

Barles (2008) , Calsina (2005,07.09), Canizo-Carrillo (2007), Champagnat
(2011,2012), Arnold-Desvillettes (2003,2008), Diekmann 2005, Mishler-Perthame
(2007), Jabin-Raoul (2011), Mirahimi (2011,2012), Prevost (2004).
• Existence of global solution, steady states , local stability, some asymptotic behaviour
• Blow-up solution .
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Competition with mutation

• For the ODE System
dv
dt

= (R + εM)v −Ψ(v)v

• For particular interaction functions Ψ or for small ε : Existence of steady states,
local/global stability are investigated Crow (1970), Hadeler (1981), Hofbauer (1985),
Bates-Chen (2011), Eigen (90’), Burger (1994), Calsina (2005), Calsina (2007),. . .

• For the PDE

∂u
∂t

= u(r(x)−Ψ(x , u)) + εM[u] in R+ × Ω

• Barles (2008) , Calsina-Cuadrado (2005,07.09), Canizo-Carrillo (2007), Champagnat
(2011,2012), Arnold-Desvillettes (2003,2008), Diekmann 2005, Mishler-Perthame
(2007), Jabin-Raoul (2011), Mirahimi (2011,2012), Prevost (2004) . . . : Existence of a
global time solution (not clear always), Steady states, local stability, convergence as
ε→ 0

Remarks

• Pertubative techniques, no control on how small ε should be
• Results on the global dynamics for a particular case.
• Use of Constrained Hamilton Jacobi Approach to analyse the Dynamics as ε→ 0
• No information at the asymptotic for fixed ε and t →∞.
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∂u
∂t

= u(r(x)−Ψ(x , u)) + div(A(x)∇u) in R+ × Ω (9)

u(x , 0) = u0(x), u(x , t) = 0 in ∂Ω (10)

Theorem 1

Assume, A is elliptic and smooth, Ψ(x , u) = α(u) is independent of x and Lipschitz
continuous with respect to the Lp with p ≥ 2. Then for any initial data u0 ∈ Lp there
exists a global time solution u(t , x) ∈ C1(R+,C2(Ω)). Moreover, let
λ1(div(A(x)∇·) + r(x)) be first eigenvalue then
• if λ1 ≥ 0, there is no positive stationary solution and u(t , x)→ 0 as t →∞
• if λ1 < 0, there exists a unique positive stationary solution ū and u(x , t)→ ū

Theorem 2

Assume, A is elliptic and smooth, Ψ(x , u) =
∫

ΩK(y , u(y)) dy + εψ(x , u) with K
smooth and ψ smooth uniformly bounded. Ψ is Lipschitz continuous with respect to an
Lp norm with p≥2. Then there exists a ε0, so that for all 0 ≤ ε ≤ ε0 there exists a
unique stationary solution ūε and for any initial data u0 ∈ Lp there exists a global time
solution u(t , x) ∈ C1(R+,C2(Ω)). Moreover, as above
• if λ1 ≥ 0, there is no positive stationary solution and u(t , x)→ 0 as t →∞
• if λ1 < 0, there exists a unique positive stationary solution ū and u(x , t)→ ūε
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∂u
∂t

= u(r(x)−Ψ(x , u)) +

∫
Ω

m(x , y)[u(y , t)− u(x , t)] dy in R+ × Ω (11)

u(x , 0) = u0(x), u(x , t) = 0 in ∂Ω (12)

Theorem 3

Assume, m is continuous, nonnegative irreducible, Ψ(x , u) = α(u) and Lipschitz
continuous with respect to the Lp with p ≥ 2. Then
∀ u0 ∈ Lp,∃!u(t , x) ∈ C1(R+,C(Ω)). Moreover, let λp(M+ r(x)) be generalized
principal eigenvalue then
• if λp ≥ 0, then u(t , x)→ 0 as t →∞
• if λp < 0 and is an eigenvalue then exists a unique positive stationary solution ū

and u(x , t)→ ū

Theorem 4

Assume, m is continuous, nonnegative irreducible, Ψ(x , u) as in Theorem 2. Then
there exists a ε0, so that for all 0 ≤ ε ≤ ε0, ∃ !ūε stationary solution and
∀ u0 ∈ Lp, ∃!, u(t , x) ∈ C1(R+,C(Ω)). Moreover, as above
• if λp ≥ 0, then u(t , x)→ 0 as t →∞
• if λp < 0 and is an eigenvalue then exists a unique positive stationary solution ū

and u(x , t)→ ū
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Global Facts

Existence of a solution of 9

• Positivity principle : if u(0) ≥ 0 then

0 < u(t , x)

• Parabolic Regularity =⇒
u(x , t) ≤ Ceλ1tφ1

where λ1 is the first eigenvalue of the matrix div(A(x)∇) + r(x) and φ1 is a
positive eigenfunction associated to λ1

• Existence via standard scheme.

For the nonlocal case :

• No parabolic regularity, so construction is a bit more difficult ! ! !
• A particular case : Ψ(u) :=

∫
ΩK(y)u(y) dy , by adapting an idea in the book of

Perthame (2007), we see that

u(x , t) =
eLt u0(x)

1 +
∫

ΩK(y)
∫ t

0 (eLsu0(y)) dsdy
. (13)

where L[u] := r(x)u +
∫

Ω m(x , y)(u(y)− u(x)) dy
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Theorem 5 (General Identities)

Let H be a smooth (at least C2) function. Let u, ū be two positive solution (9) then we
have

dH(t)
dt

= −D(u) +

∫
Ω

ū2(x)H′
(

u
ū

(x)

)
Γ(x)u(x) dx (14)

where H, D are the following quantity :

H(u(t)) :=

∫
Ω

ū2(x)H
(

u(x)

ū(x)

)
dx

D(u) :=

∫
Ω

ū2(x)A(x)H′′
(

u(x)

ū(x)

) ∣∣∣∣∇(u
ū

)∣∣∣∣2 dx

Comments

• This identity works whatever the problem is ! ! ! ! !
• When Γ ≡ 0, it is the well known General Relative Entropy of

Mischler-Michel-Perthame (2005)
• Similar identities holds for the Competition system and for the non local problem.
• Choosing the right function H gives access to all possible useful norm
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Sketch of the proof of Theorem 1 : ∀ x ,Ψ(x , u) = α(u)

Stationary Solution

Let φ1 be the positive eigenvector of div(A(x)∇+ r(x)) associated to λ1 normalized
by ‖φ1‖2 = 1 Then ∃! µ0 so that µ0φ1 is a stationary solution of (9). Moreover, this is
the unique stationary solution of the problem.

A priori Estimate

• Let u be a positive solution of (9), then there exists C1(u0) so that

‖u‖2 + ‖uφ1‖1 ≤ C1,

• There exists c0 > 0 so that for all times t ≥ 0, ‖uφ1‖1 > c0(u0)



I – Introduction and Motivation II – Statement and Results III – Element of the Proofs IV – Perspectives

• Decomposition : u(t) = λ(t)µ0φ1 + h(t) with h(t) ∈ φ⊥1
• Miraculous identities + Decomposition =⇒

dβ(v(t))

dt
= (α(ū)− α(u))β(u) (15)

dE(h(t))

dt
= −2

∫
Ω

ū2(x)A(x)

∣∣∣∣∇(u
ū

)∣∣∣∣2 dx + 2(α(ū)− α(u))E(h) (16)

where E(h(t)) = ‖h‖2
2 and β(u) := ‖uū‖1 with ū = µ0φ1 the unique steady state.

• Decomposition+ (15)+Lipschitz continuity of α =⇒

λ′(t) = (α(ū)− α̃(λ(t)))λ(t) + λ(t)o(1)

where |o(1)| = |α̃(λ(t)ū)− α(λ(t)ū + h(t))| ≤ C
√
E(h) as t →∞ and

α̃(s) := α(sū).

• (15) +(16) =⇒ for F(t) := log
[
‖h‖2

2
(β(u))2

]
,

d
dt
F(t) = −

2
E(h)

∫
Ω

ū2(x)A(x)

∣∣∣∣∇(u
ū

)∣∣∣∣2 dx < 0.
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Ideas for the convergence when Ψ(x , u) := α(u) + εψ(x , u)

Lemma 6

There exists ω̄− < ω̄+ ∈ R+, c̄1 < C̄1, c̄2(u0) < C̄2(u0) and ε1 so that for all
0 ≤ ε ≤ ε1 and for any positive stationary solution ūε, we have

c̄1 ≤ ‖ūε‖1 < C̄1, c̄2 ≤ β(uε(t)) := ‖ūεuε‖1 ≤ C̄2.

Moreover, ūε satisfies ω̄−φ1 ≤ ūε ≤ ω̄+φ1.

Need information on homeomorphism :

Ψ̃ūε (s) :=

∫
Ω

Ψ(x , sūε)ū2
ε dx .

Lemma 7

There exists ε2 and τ0 > 0 so that ∀ ε ≤ ε2,∀ v̄ε stationary solution :

c̄3 ≤ Ψ̃ūε (1) ≤ C̄3 ≤ 2C̄3 ≤ Ψ̃ūε (1 + τ0).

Moreover ∃ε3, k > 0 so that ∀ ε ≤ ε3 and ∀ ūε and ∀, t , s ∈ (0, 1 + τ0)

|t − s| ≤ k |Ψ̃ūε (t)− Ψ̃ūε (s)|.
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• Decomposition : v(t) = λ(t)ū + h(t) with h(t) ∈ ū⊥

• Miraculous identities + Decomposition +estimates =⇒

λ′(t)E(ū) = λ(t)(Ψ̃ū(1)− Ψ̃ū(λ(t))) + o(1), (17)

dE(h)

dt
− E(h)

d
dt

log(β2(u(t))) ≤ −
C1(ω̄+φ1)

4
E(h) + εC4|1− λ(t)|

√
E(h). (18)

where
|o(1)| ≤ C(1 + ε)

√
E(h)

and C1,C4 are positive constants.
• E(h)→ 0 =⇒ λ(t)→ 1
• E(h)→ 0 : Iterative Scheme using (18) and (17)

Remark

• The proof rely on the Hilbert structure of L2 =⇒ with the Parabolic regularity we
can extend the proof to p ≥ 1 as soon as the coefficient are regular enough.

• This will not be the case for nonlocal equation ! ! ! New ideas are needed.
• No blow up in these cases
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Blow-up phenomena :

A particular case

∂u
∂t

= u
(

r(x)−
∫

Ω
u
)

+ ρ

(∫
Ω

u(y) dy − |Ω|u(x)

)
in R+ × Ω (19)

u(x , 0) = u0(x) (20)

Theorem 8

Assume r achieve a single maximum in x0 and so that ‖ 1
r(x0)−r(x)

‖1 < 1. Assume that

λp < 0, then there exists ρ0 so that for all ρ ≤ ρ0 and for any initial data u0 ∈ L1 the
global time solution u(t , x) ∈ C1(R+,C(Ω)) blow up in infinite time. Moreover,
u(x , t)→ αδx0 + f where f ∈ L1.
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Some numerics to convince you (Run by Freefem++ with the Help of O. Bonnefon, G.
Legendre)
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III. Perspective and Open Problems
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Summary

• Provided a way to analyse the asymptotic of some competition model with
mutation via the construction of a relative entropy.

• This analysis apply both for PDE mutation- selection model and for ODE system,
even lattice system. It give new perspective on the analysis of the spectral
property of nonlocal operator.

Things to do

• Better understanding of the PDE/ODE system for more general interaction
• Remove the symmetry condition.
• Better understanding of the blow up solution
• Mixing space and trait, curve front
• Have better numerics
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Thank you for your attention


	I – Introduction and Motivation
	II – Statement and Results
	The diffusion case
	The nonlocal diffusion case

	III – Element of the Proofs
	Global Facts
	Proofs
	Blow-up phenomena

	IV – Perspectives

